6533b7dafe1ef96bd126e40b
RESEARCH PRODUCT
Direct and indirect singlet scalar dark matter detection in the lepton-specific two-Higgs-doublet model
S. ProfumoM. S. Boucennasubject
Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaDark matterScalar field dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesNuclear physicsTwo-Higgs-doublet modelHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsLight dark matterHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsHot dark matterHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyWeakly interacting massive particlesAstrophysics - High Energy Astrophysical PhenomenaDark fluidAstrophysics - Cosmology and Nongalactic AstrophysicsLeptondescription
A recent study of gamma-ray data from the Galactic Center motivates the investigation of light (~7-10 GeV) particle dark matter models featuring tau lepton pairs as dominant annihilation final state. The Lepton-Specific two-Higgs-doublet Model (2HDM-L) provides a natural framework where light, singlet scalar dark matter can pair-annihilate dominantly into tau leptons. We calculate the nucleon-dark matter cross section for singlet scalar dark matter within the 2HDM-L framework, and compare with recent results from direct detection experiments. We study how direct dark matter searches can be used to constrain the dark matter interpretation of gamma ray observations, for different dominant annihilation final states. We show that models exist with the correct thermal relic abundance that could fit the claimed gamma-ray excess from the Galactic Center region and have direct detection cross sections of the order of what needed to interpret recent anomalous events reported by direct detection experiments.
year | journal | country | edition | language |
---|---|---|---|---|
2011-06-16 | Physical Review D |