0000000000357094

AUTHOR

Lucy Moser-jauslin

showing 9 related works from this author

Real structures on nilpotent orbit closures

2021

We determine the equivariant real structures on nilpotent orbits and the normalizations of their closures for the adjoint action of a complex semisimple algebraic group on its Lie algebra.

Mathematics - Algebraic Geometryreal form14R20 14M17 14P99 11S25 20G20homogeneous spaceMathematics::Rings and Algebrasreal structureGalois cohomology[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]FOS: MathematicsNilpotent orbitMathematics::Representation TheoryAlgebraic Geometry (math.AG)
researchProduct

Noncancellation for contractible affine threefolds

2011

We construct two nonisomorphic contractible affine threefolds X X and Y Y with the property that their cylinders X × A 1 X\times \mathbb {A}^{1} and Y × A 1 Y\times \mathbb {A}^{1} are isomorphic, showing that the generalized Cancellation Problem has a negative answer in general for contractible affine threefolds. We also establish that X X and Y Y are actually biholomorphic as complex analytic varieties, providing the first example of a pair of biholomorphic but not isomorphic exotic A 3 \mathbb {A}^{3} ’s.

Pure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematics0103 physical sciences010307 mathematical physicsAffine transformation0101 mathematics01 natural sciencesContractible spaceMathematicsProc. Amer. Math. Soc.
researchProduct

Locally nilpotent derivations of rings with roots adjoined

2013

Algebra14L30General MathematicsLocally nilpotent13A5014R2013N15Mathematics
researchProduct

Automorphism Groups of Certain Rational Hypersurfaces in Complex Four-Space

2014

The Russell cubic is a smooth contractible affine complex threefold which is not isomorphic to affine three-space. In previous articles, we discussed the structure of the automorphism group of this variety. Here we review some consequences of this structure and generalize some results to other hypersurfaces which arise as deformations of Koras–Russell threefolds.

Automorphism groupPure mathematics010102 general mathematicsStructure (category theory)Space (mathematics)Automorphism01 natural sciencesContractible spaceAlgebraMathematics::Algebraic GeometryAffine representation0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010307 mathematical physicsAffine transformation0101 mathematicsVariety (universal algebra)Mathematics
researchProduct

Invariants of equivariant algebraic vector bundles and inequalities for dominant weights

1998

Section (fiber bundle)Vector-valued differential formPure mathematicsChern classLine bundleVector bundleGeometry and TopologyPrincipal bundleTautological line bundleFrame bundleMathematicsTopology
researchProduct

Embeddings of Danielewski surfaces

2003

A Danielewski surface is defined by a polynomial of the form P=x nz −p(y). Define also the polynomial P ′ =x nz −r(x)p(y) where r(x) is a non-constant polynomial of degree ≤n−1 and r(0)=1. We show that, when n≥2 and deg p(y)≥2, the general fibers of P and P ′ are not isomorphic as algebraic surfaces, but that the zero fibers are isomorphic. Consequently, for every non-special Danielewski surface S, there exist non-equivalent algebraic embeddings of S in ℂ3. Using different methods, we also give non-equivalent embeddings of the surfaces xz=(y d n >−1) for an infinite sequence of integers d n . We then consider a certain algebraic action of the orthogonal group $\mathcal O(2)$ on ℂ4 which was…

CombinatoricsDiscrete mathematicsSurface (mathematics)PolynomialDegree (graph theory)General MathematicsAlgebraic surfaceTangent spaceZero (complex analysis)Orthogonal groupAlgebraic numberMathematicsMathematische Zeitschrift
researchProduct

Equivariant algebraic vector bundles over cones with smooth one dimensional quotient

1998

AlgebraPure mathematicsChern classLine bundleGeneral Mathematics14JxxEquivariant cohomologyVector bundleFundamental vector fieldEquivariant mapPrincipal bundleQuotientMathematicsJournal of the Mathematical Society of Japan
researchProduct

Locally nilpotent derivations of rings graded by an abelian group

2019

International audience

Russel cubic threefoldPure mathematicsAffine algebraic geometryPham-Brieskorn variety010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Locally nilpotent13A50Locally nilpotent derivation01 natural sciences[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Russell cubic threefold0103 physical sciences010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]0101 mathematicsAbelian group14R20MSC: Primary 14R20 ; Secondary 13A50ComputingMilieux_MISCELLANEOUSMathematics
researchProduct

Embeddings of a family of Danielewski hypersurfaces and certain \C^+-actions on \C^3

2006

International audience; We consider the family of complex polynomials in \C[x,y,z] of the form x^2y-z^2-xq(x,z). Two such polynomials P_1 and P_2 are equivalent if there is an automorphism \varphi of \C[x,y,z] such that \varphi(P_1)=P_2. We give a complete classification of the equivalence classes of these polynomials in the algebraic and analytic category.

14R10; 14R05 ; 14L30equivalence of polynomialsDanielewski surfacesstable equivalence[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Physics::Atomic Physicsalgebraic embeddings[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct