Spinorial formulation of the GW-BSE equations and spin properties of excitons in two-dimensional transition metal dichalcogenides
In many paradigmatic materials, such as transition metal dichalcogenides, the role played by the spin degrees of freedom is as important as the one played by the electron-electron interaction. Thus an accurate treatment of the two effects and of their interaction is necessary for an accurate and predictive study of the optical and electronic properties of these materials. Despite the fact that the GW-BSE approach correctly accounts for electronic correlations, the spin-orbit coupling effect is often neglected or treated perturbatively. Recently, spinorial formulations of GW-BSE have become available in different flavors in material-science codes. However, an accurate validation and comparis…
Time-dependent screening explains the ultrafast excitonic signal rise in 2D semiconductors
We calculate the time evolution of the transient reflection signal in an MoS$_2$ monolayer on a SiO$_2$/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers towards small $\textit{Active Excitonic Regions}$ around K, enhancing the dielectric screening. The acc…
Excitonic States in Semiconducting Two-dimensional Perovskites
Hybrid organic/inorganic perovskites have emerged as efficient semiconductor materials for applications in photovoltaic solar cells with conversion efficiency above 20 \%. Recent experiments have synthesized ultra-thin two-dimensional (2D) organic perovskites with optical properties similar to those of 2D materials like monolayer MoS$_2$: large exciton binding energy and excitonic effects at room temperature. In addition, 2D perovskites are synthesized with a simple fabrication process with potential low-cost and large-scale manufacture. Up to now, state-of-the-art simulations of the excitonic states have been limited to the study of bulk organic perovskites. A large number of atoms in the …
Tight-Binding Simulations of Nanowires
Optical Contrast and Raman Spectroscopy Techniques Applied to Few-Layer 2D Hexagonal Boron Nitride
The successful integration of few-layer thick hexagonal boron nitride (hBN) into devices based on two-dimensional materials requires fast and non-destructive techniques to quantify their thickness. Optical contrast methods and Raman spectroscopy have been widely used to estimate the thickness of two-dimensional semiconductors and semi-metals. However, they have so far not been applied to two-dimensional insulators. In this work, we demonstrate the ability of optical contrast techniques to estimate the thickness of few-layer hBN on SiO2/Si substrates, which was also measured by atomic force microscopy. Optical contrast of hBN on SiO2/Si substrates exhibits a linear trend with the number of h…
Inhomogeneous Broadening of Photoluminescence Spectra and Kinetics of Nanometer-Thick (Phenethylammonium)2PbI4 Perovskite Thin Films: Implications for Optoelectronics
An outstanding potentiality of layered two-dimensional (2D) organic–inorganic hybrid perovskites (2DHPs) is in the development of solar cells, photodetectors, and light-emitting diodes. In 2DHPs, an exciton is localized in an atomically thin lead(II) halide inorganic layer of sub-nanometer thickness as in a quantum well sandwiched between organic layers as energetic and dielectric barriers. In previous years, versatile optical characterization of 2DHPs has been carried out mainly for thin flakes of single crystals and ultrathin (of the order of 20 nm) polycrystalline films, whereas there is a lack of optical characterization of thick (hundreds of nanometers) polycrystalline films, fundament…
Interlayer and intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers
Accurately described excitonic properties of transition metal dichalcogenide heterobilayers (HBLs) are crucial to comprehend the optical response and the charge carrier dynamics of them. Excitons in multilayer systems possess an inter- or intralayer character whose spectral positions depend on their binding energy and the band alignment of the constituent single layers. In this paper, we report the electronic structure and the absorption spectra of ${\mathrm{MoS}}_{2}/{\mathrm{WS}}_{2}$ and ${\mathrm{MoSe}}_{2}/{\mathrm{WSe}}_{2}$ HBLs from first-principles calculations. We explore the spectral positions, binding energies, and the origins of inter- and intralayer excitons and compare our re…
Strongly Coupled Coherent Phonons in Single-Layer MoS 2
We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution ($\sim$20fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We generate and detect coherent phonons (CPs) in single layer (1L) MoS$_2$, as a representative semiconducting 1L-transition metal dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane $A'_{1}$ phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a timescale of few tens fs. We observe an enhancement by…
Electronic and magnetic properties of VOCl/FeOCl antiferromagnetic heterobilayers
We study the electronic properties of the heterobilayer of vanadium and iron oxychlorides, VOCl and FeOCl, two layered air stable van der Waals insulating oxides with different types of antiferromagnetic order in bulk: VOCl monolayers are ferromagnetic (FM) whereas the FeOCl monolayers are antiferromagnetic (AF). We use density functional theory (DFT) calculations, with Hubbard correction that is found to be needed to describe correctly the insulating nature of these compounds. We compute the magnetic anisotropy and propose a spin model Hamiltonian. Our calculations show that interlayer coupling in weak and ferromagnetic so that magnetic order of the monolayers is preserved in the heterobil…
Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide.
Van der Waals materials offer a wide range of atomic layers with unique properties that can be easily combined to engineer novel electronic and photonic devices. A missing ingredient of the van der Waals platform is a two-dimensional crystal with naturally occurring out-of-plane luminescent dipole orientation. Here we measure the far-field photoluminescence intensity distribution of bulk InSe and two-dimensional InSe, WSe2 and MoSe2. We demonstrate, with the support of ab-initio calculations, that layered InSe flakes sustain luminescent excitons with an intrinsic out-of-plane orientation, in contrast with the in-plane orientation of dipoles we find in two-dimensional WSe2 and MoSe2 at room-…