0000000000360800

AUTHOR

K. D. Lawson

Impurity analysis of JET DiMPle pulses

Divertor monitoring pulses (DiMPle) have been run in JET from the C35 campaign onwards. They provide an opportunity to study the impurity contamination of the plasma when it is limited by different surfaces within the machine, as well as the longer term behaviour of the impurities. In these discharges the plasma is first limited on the outer wall, then on the inner wall and, subsequently, in the X-point configuration the outer strike point is positioned on the horizontal tile 5 of the machine followed by tile 6 and then the vertical tile 7. The present study details the impurity behaviour in the DiMPle pulses from JET-ILW campaigns C35 to C38, which ran from 2015 to 2019. The impurities can…

research product

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures.…

research product

Novel method for determination of tritium depth profiles in metallic samples

Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evo…

research product

Overview of the JET results

Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in…

research product

Understanding tungsten erosion during inter/intra-ELM periods in He-dominated JET-ILW plasmas

Tungsten erosion was quantified during inter/intra-ELM periods in He-dominated JET-ILW plasmas by optical emission spectroscopy. The intra-ELM tungsten sputtering in helium plasmas, which dominates the total W source, prevails by a factor of about 4 over inter-ELM sputtering in the investigated ELM frequency range from 90 Hz-120 Hz. He ions are mainly responsible for the W erosion during the ELMs in He plasmas. The strong in/out asymmetry of the ELM-induced W erosion is observed in He plasmas even at high ELM frequencies beyond 100 Hz. In Ohmic/L-mode plasmas and during the H-mode inter-ELM plasma phases both He2+ and Be2+ ionic species are major contributors to the W erosion. Their contrib…

research product

Comparison of the structure of the plasma-facing surface and tritium accumulation in beryllium tiles from JET ILW campaigns 2011-2012 and 2013-2014

In this study, beryllium tiles from Joint European Torus (JET) vacuum vessel wall were analysed and compared regarding their position in the vacuum vessel and differences in the exploitation conditions during two campaigns of ITER-Like-Wall (ILW) in 2011-2012 (ILW1) and 2013-2014 (ILW2) Tritium content in beryllium samples were assessed. Two methods were used to measure tritium content in the samples - dissolution under controlled conditions and tritium thermal desorption. Prior to desorption and dissolution experiments, scanning electron microscopy and energy dispersive x-ray spectroscopy were used to study structure and chemical composition of plasma-facing-surfaces of the beryllium sampl…

research product

Overview of the JET results with the ITER-like wall

Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Zeff (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. T…

research product

Overview of the JET results in support to ITER

The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent m…

research product

ITER-relevant calibration technique for soft x-ray spectrometer

The ITER-oriented JET research program brings new requirements for the low-Z impurity monitoring, in particular for the Be—the future main wall component of JET and ITER. Monitoring based on Bragg spectroscopy requires an absolute sensitivity calibration, which is challenging for large tokamaks. This paper describes both “component-by-component” and “continua” calibration methods used for the Be IV channel (75.9 Å) of the Bragg rotor spectrometer deployed on JET. The calibration techniques presented here rely on multiorder reflectivity calculations and measurements of continuum radiation emitted from helium plasmas. These offer excellent conditions for the absolute photon flux calibration d…

research product

Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating

International audience; During the 2015--2016 JET campaigns, many efforts have been devoted to the exploration of high-performance plasma scenarios envisaged for DT operation in JET. In this paper, we review various key recent hybrid discharges and model the combined ICRF NBI heating. These deuterium discharges with deuterium beams had the ICRF antenna frequency tuned to match the cyclotron frequency of minority H at the centre of the tokamak coinciding with the second harmonic cyclotron resonance of D. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of D beam ions, allowing us to assess its impact on the neutron rate…

research product

Improved EDGE2D-EIRENE simulations of JET ITER-like wall L-mode discharges utilising poloidal VUV/visible spectral emission profiles

A discrepancy in the divertor radiated powers between EDGE2D-EIRENE simulations, both with and without drifts, and JET-ILW experiments employing a set of NBI-heated L-mode discharges with step-wise density variation is investigated. Results from a VUV/visible poloidally scanning spectrometer are used together with bolometric measurements to determine the radiated power and its composition. The analysis shows the importance of D line radiation in contributing to the divertor radiated power, while contributions from D radiative recombination are smaller than expected. Simulations with W divertor plates underestimate the Be content in the divertor, since no allowance is made for Be previously …

research product

Erosion and screening of tungsten during inter/intra-ELM periods in the JET-ILW divertor

Abstract Intra-ELM tungsten sources, which dominate the total W source, are quantified in the inner and outer divertor of JET-ILW. The amount of the sputtered W atoms for individual ELMs demonstrates a clear dependence on the ELM frequency. It decreases when the pedestal temperature is lower and, correspondingly, the ELM frequency is higher. Nevertheless, the entire gross erosion W source (the number of eroded W atoms per second due to ELMs) increases initially with ELM frequency and reaches its maximum at fELM ≈ 50–55 Hz followed by its reduction in the high frequency range. The in/out asymmetry of the intra-ELM W sources during ELMs is a critical issue and is investigated in this contribu…

research product

Analysis of metallic impurity content by means of VUV and SXR diagnostics in hybrid discharges with hot-spots on the JET-ITER-like wall poloidal limiter

In preparation for the upcoming JET D-T campaign, great effort has been devoted during the 2015-2016 JET campaigns with the ITER-like wall (ILW) to the extension of the high performance H-mode phase in baseline and hybrid scenarios. Hybrid discharges were the only ones that have been stopped by the real-time vessel protection system due hot-spot formation on the outboard poloidal limiter. Generation of hot-spots was linked to the application of high neutral beams injection and ion cyclotron resonance heating (ICRH) power. In tokamaks with high-Z plasma components, the use of ICRH heating is also accompanied by an increased metallic impurity content. Simultaneous control of hot-spot temperat…

research product