0000000000361140

AUTHOR

A. Shaw

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures.…

research product

Novel method for determination of tritium depth profiles in metallic samples

Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evo…

research product

Measuring the isotope effect on the gross beryllium erosion in JET

Abstract The isotope effect, hydrogen (H) versus deuterium (D), on the gross beryllium (Be) erosion yield has been measured in ohmic limiter plasmas in JET tokamak by spectroscopic means. A simplified method to extract the effective sputtering yield from the quotient of the radiances of the D α or D γ and the Be II lines at 527 nm was applied. A clear isotope effect has been found, the erosion yield of D being about a factor of 2 larger compared to H in the whole explored plasma density range. This is in agreement with physical sputtering data obtained with H+ and D+ ion beams and also with material surface computer simulations. The already published contribution of chemically assisted phys…

research product

Understanding tungsten erosion during inter/intra-ELM periods in He-dominated JET-ILW plasmas

Tungsten erosion was quantified during inter/intra-ELM periods in He-dominated JET-ILW plasmas by optical emission spectroscopy. The intra-ELM tungsten sputtering in helium plasmas, which dominates the total W source, prevails by a factor of about 4 over inter-ELM sputtering in the investigated ELM frequency range from 90 Hz-120 Hz. He ions are mainly responsible for the W erosion during the ELMs in He plasmas. The strong in/out asymmetry of the ELM-induced W erosion is observed in He plasmas even at high ELM frequencies beyond 100 Hz. In Ohmic/L-mode plasmas and during the H-mode inter-ELM plasma phases both He2+ and Be2+ ionic species are major contributors to the W erosion. Their contrib…

research product

Comparison of the structure of the plasma-facing surface and tritium accumulation in beryllium tiles from JET ILW campaigns 2011-2012 and 2013-2014

In this study, beryllium tiles from Joint European Torus (JET) vacuum vessel wall were analysed and compared regarding their position in the vacuum vessel and differences in the exploitation conditions during two campaigns of ITER-Like-Wall (ILW) in 2011-2012 (ILW1) and 2013-2014 (ILW2) Tritium content in beryllium samples were assessed. Two methods were used to measure tritium content in the samples - dissolution under controlled conditions and tritium thermal desorption. Prior to desorption and dissolution experiments, scanning electron microscopy and energy dispersive x-ray spectroscopy were used to study structure and chemical composition of plasma-facing-surfaces of the beryllium sampl…

research product

XIPE: the x-ray imaging polarimetry explorer

XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror bu…

research product

Overview of the JET results in support to ITER

The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent m…

research product

Letter

We present a study of the power threshold for L–H transitions (PLH) in almost pure helium plasmas, obtained in recent experiments at JET with an ITER-like wall (Be wall and W divertor). The most notable new result is that the density at which PLH is minimum, ${\bar{n}}_{\text{e},\mathrm{min}}$, is considerably higher for helium than for deuterium and hydrogen plasmas. We discuss the possible implications for ITER in its pre-fusion operating power phase.

research product

Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score

The British journal of surgery 108(11), 1274-1292 (2021). doi:10.1093/bjs/znab183

research product

Recent progress in L-H transition studies at JET: tritium, helium, hydrogen and deuterium

Abstract We present an overview of results from a series of L–H transition experiments undertaken at JET since the installation of the ITER-like-wall (JET-ILW), with beryllium wall tiles and a tungsten divertor. Tritium, helium and deuterium plasmas have been investigated. Initial results in tritium show ohmic L–H transitions at low density and the power threshold for the L–H transition (P LH) is lower in tritium plasmas than in deuterium ones at low densities, while we still lack contrasted data to provide a scaling at high densities. In helium plasmas there is a notable shift of the density at which the power threshold is minimum ( n ¯ e , min ) to higher values relative to deuterium and …

research product

Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating

International audience; During the 2015--2016 JET campaigns, many efforts have been devoted to the exploration of high-performance plasma scenarios envisaged for DT operation in JET. In this paper, we review various key recent hybrid discharges and model the combined ICRF NBI heating. These deuterium discharges with deuterium beams had the ICRF antenna frequency tuned to match the cyclotron frequency of minority H at the centre of the tokamak coinciding with the second harmonic cyclotron resonance of D. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of D beam ions, allowing us to assess its impact on the neutron rate…

research product

Erosion and screening of tungsten during inter/intra-ELM periods in the JET-ILW divertor

Abstract Intra-ELM tungsten sources, which dominate the total W source, are quantified in the inner and outer divertor of JET-ILW. The amount of the sputtered W atoms for individual ELMs demonstrates a clear dependence on the ELM frequency. It decreases when the pedestal temperature is lower and, correspondingly, the ELM frequency is higher. Nevertheless, the entire gross erosion W source (the number of eroded W atoms per second due to ELMs) increases initially with ELM frequency and reaches its maximum at fELM ≈ 50–55 Hz followed by its reduction in the high frequency range. The in/out asymmetry of the intra-ELM W sources during ELMs is a critical issue and is investigated in this contribu…

research product