Response to metals treatment of Fra1, a member of the AP-1 transcription factor family, in P. lividus sea urchin embryos
Abstract Lithium (Li), Nickel (Ni), and Zinc (Zn) are metals normally present in the seawater, although they can have adverse effects on the marine ecosystem at high concentrations by interfering with many biological processes. These metals are toxic for sea urchin embryos, affecting their morphology and developmental pathways. In particular, they perturb differently the correct organization of the embryonic axes (animal-vegetal, dorso-ventral): Li is a vegetalizing agent and Ni disrupts the dorso-ventral axis, while Zn has an animalizing effect. To deeply address the response of Paracentrotus lividus embryos to these metals, we studied the expression profiling of Pl-Fra transcription facto…
Nickel toxicity in P. lividus embryos: Dose dependent effects and gene expression analysis.
Abstract Many industrial activities release Nickel (Ni) in the environment with harmful effects for terrestrial and marine organisms. Despite many studies on the mechanisms of Ni toxicity are available, the understanding about its toxic effects on marine organisms is more limited. We used Paracentrotus lividus as a model to analyze the effects on the stress pathways in embryos continuously exposed to different Ni doses, ranging from 0.03 to 0.5 mM. We deeply examined the altered embryonic morphologies at 24 and 48 h after Ni exposure. Some different phenotypes have been classified, showing alterations at the expenses of the dorso-ventral axis as well as the skeleton and/or the pigment cells…
Are control of extracellular acid-base balance and regulation of skeleton genes linked to resistance to ocean acidification in adult sea urchins?
SCOPUS: ar.j
Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species
Chelates of Gadolinium (Gd), a lanthanide metal, are employed as contrast agents for magnetic resonance imaging and are released into the aquatic environment where they are an emerging contaminant. We studied the effects of environmentally relevant Gd concentrations on the development of two phylogenetically and geographically distant sea urchin species: the Mediterranean Paracentrotus lividus and the Australian Heliocidaris tuberculata. We found a general delay of embryo development at 24 h post-fertilization, and a strong inhibition of skeleton growth at 48 h. Total Gd and Ca content in the larvae showed a time- and concentration-dependent increase in Gd, in parallel with a reduction in C…
Manganese interferes with calcium, perturbs ERK signaling, and produces embryos with no skeleton.
Manganese (Mn) has been associated with embryo toxicity as it impairs differentiation of neural and skeletogenic cells in vertebrates. Nevertheless, information on the mechanisms operating at the cellular level remains scant. We took advantage of an amenable embryonic model to investigate the effects of Mn in biomineral formation. Sea urchin (Paracentrotus lividus) embryos were exposed to Mn from fertilization, harvested at different developmental stages, and analyzed for their content in calcium (Ca), expression of skeletogenic genes, localization of germ layer markers, and activation of the extracellular signal-regulated kinase (ERK). By optical and immunofluorescence microscopy, we found…
Centrifugation does not alter spatial distribution of `BEP4' mRNA in paracentrotus lividus EGG
AbstractParacentrotus lividus unfertilized eggs were centrifuged in a sucrose gradient, so to split each into two parts: a nucleated light fragment and an anucleated heavy fragment. Northern blot analyses utilizing a bep4 probe as animal marker and H2A histone gene and 12S-mit RNA as controls indicate that the eggs are elongated along the animal-vegetal axis during centrifugation and thereafter split into an animal and a vegetal half. Treatment of the eggs with colchicine before centrifugation abolishes the animal localization of bep4 mRNA.