0000000000364621

AUTHOR

Ralf W. Troff

Alternative Motifs for Halogen Bonding

The halogen-bonding interaction is one of the rising stars in supramolecular chemistry. Although other weak interactions and their influence on the structure and chemistry of various molecules, complexes and materials have been investigated thoroughly, the field of halogen bonding is still quite unexplored and its impact on chemistry in general is yet to be fully revealed. In principle, every Y–X bond (Y = electron-withdrawing atom or moiety, X = halogen atom) can act as a halogen-bond donor when the halogen is polarized enough by Y. Perfluorohalocarbons are iconic halogen-bond donor molecules in which Y is a perfluorinated aryl or alkyl moiety and X is either iodine or bromine. In this art…

research product

Equipping metallo-supramolecular macrocycles with functional groups: Assemblies of pyridine-substituted urea ligands

A series of di-(m-pyridyl)-urea ligands were prepared and characterized with respect to their conformations by NOESY experiments and crystallography. Methyl substitution in different positions of the pyridine rings provides control over the position of the pyridine N atoms relative to the urea carbonyl group. The ligands were used to self-assemble metallo-supramolecular M(2)L(2) and M(3)L(3) macrocycles which are generated in a finely balanced equilibrium in DMSO and DMF according to DOSY NMR experiments and ESI FTICR mass spectrometry. Again, crystallography was used to characterize the assemblies. Methyl substitution in positions next to the pyridine nitrogen prevents coordination, while …

research product

Alternative Motifs for Halogen Bonding (Eur. J. Org. Chem. 9/2013)

research product

One-pot synthesis and characterization of subnanometre-size benzotriazolate protected copper clusters

A simple one-pot method for the preparation of subnanometre-size benzotriazolate (BTA) protected copper clusters, Cu(n)BTA(m), is reported. The clusters were analyzed by optical and infrared spectroscopy, mass spectrometry and transmission electron microscopy together with computational methods. We suggest a structural motif where the copper core of the Cu(n)BTA(m) clusters is protected by BTA-Cu(i)-BTA units.

research product