0000000000369272
AUTHOR
Clara Fernandez-labrador
Unsupervised learning of category-specific symmetric 3D keypoints from point sets
Lecture Notes in Computer Science, 12370
Indoor Scene Understanding using Non-Conventional Cameras
Humans understand environments effortlessly, under a wide variety of conditions, by the virtue of visual perception. Computer vision for similar visual understanding is highly desirable, so that machines can perform complex tasks by interacting with the real world, to assist or entertain humans. In this regard, we are particularly interested in indoor environments, where humans spend nearly all their lifetime.This thesis specifically addresses the problems that arise during the quest of the hierarchical visual understanding of indoor scenes.On the side of sensing the wide 3D world, we propose to use non-conventional cameras, namely 360º imaging and 3D sensors. On the side of understanding, …
PanoRoom: From the Sphere to the 3D Layout
We propose a novel FCN able to work with omnidirectional images that outputs accurate probability maps representing the main structure of indoor scenes, which is able to generalize on different data. Our approach handles occlusions and recovers complex shaped rooms more faithful to the actual shape of the real scenes. We outperform the state of the art not only in accuracy of the 3D models but also in speed.