0000000000369397

AUTHOR

Shui-chao Lin

Atomically Precise Alkynyl-Protected Metal Nanoclusters as a Model Catalyst: Observation of Promoting Effect of Surface Ligands on Catalysis by Metal Nanoparticles

Metal nanoclusters whose surface ligands are removable while keeping their metal framework structures intact are an ideal system for investigating the influence of surface ligands on catalysis of metal nanoparticles. We report in this work an intermetallic nanocluster containing 62 metal atoms, Au34Ag28(PhC≡C)34, and its use as a model catalyst to explore the importance of surface ligands in promoting catalysis. As revealed by single-crystal diffraction, the 62 metal atoms in the cluster are arranged as a four-concentric-shell Ag@Au17@Ag27@Au17 structure. All phenylalkynyl (PA) ligands are linearly coordinated to the surface Au atoms with staple "PhC≡C-Au-C≡CPh" motif. Compared with reporte…

research product

Highly Robust but Surface-Active : An N-Heterocyclic Carbene-Stabilized Au25 Nanocluster

Surface organic ligands play a critical role in stabilizing atomically precise metal nanoclusters in solutions. However, it is still challenging to prepare highly robust ligated metal nanoclusters that are surface-active for liquid-phase catalysis without any pre-treatment. Now, an N-heterocyclic carbene-stabilized Au25 nanocluster with high thermal and air stabilities is presented as a homogenous catalyst for cycloisomerization of alkynyl amines to indoles. The nanocluster, characterized as [Au25(iPr2-bimy)10Br7]2+ (iPr2-bimy=1,3-diisopropylbenzimidazolin-2-ylidene) (1), was synthesized by direct reduction of AuSMe2Cl and iPr2-bimyAuBr with NaBH4 in one pot. X-ray crystallization analysis …

research product

Solubility-Driven Isolation of a Metastable Nonagold Cluster with Body-Centered Cubic Structure.

The conventional synthetic methodology of atomically precise gold nanoclusters using reduction in solutions offers only thermodynamically most stable nanoclusters. We report herein a solubility‐driven isolation strategy to access the synthesis of a metastable gold cluster. The cluster, with the composition of [Au 9 (PPh 3 ) 8 ] + ( 1 ), displays an unusual, nearly perfect body‐centered‐cubic (bcc) structure. As revealed by ESI‐MS and UV/Vis measurement, the cluster is metastable in solution and converts to the well‐known [Au 11 (PPh 3 ) 8 Cl 2 ] + ( 2 ) within just 90 min. DFT calculations revealed that while both 1 and 2 are eight‐electron superatoms, there is a driving force to convert 1 …

research product

An Intermetallic Au24Ag20 Superatom Nanocluster Stabilized by Labile Ligands

An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L …

research product

Ligand-Stabilized Au13Cux (x = 2, 4, 8) Bimetallic Nanoclusters: Ligand Engineering to Control the Exposure of Metal Sites

Three novel bimetallic Au-Cu nanoclusters stabilized by a mixed layer of thiolate and phosphine ligands bearing pyridyl groups are synthesized and fully characterized by X-ray single crystal analysis and density functional theory computations. The three clusters have an icosahedral Au13 core face-capped by two, four, and eight Cu atoms, respectively. All face-capping Cu atoms in the clusters are triply coordinated by thiolate or pyridyl groups. The surface ligands control the exposure of Au sites in the clusters. In the case of the Au13Cu8 cluster, the presence of 12 2-pyridylthiolate ligands still leaves open space for catalysis. All the 3 clusters are 8-electron superatoms displaying opti…

research product

Bulky Surface Ligands Promote Surface Reactivities of [Ag141X12(S-Adm)40]3+ (X = Cl, Br, I) Nanoclusters: Models for Multiple-Twinned Nanoparticles

Surface ligands play important roles in controlling the size and shape of metal nanoparticles and their surface properties. In this work, we demonstrate that the use of bulky thiolate ligands, along with halides, as the surface capping agent promotes the formation of plasmonic multiple-twinned Ag nanoparticles with high surface reactivities. The title nanocluster [Ag141X12(S-Adm)40]3+ (where X = Cl, Br, I; S-Adm = 1-adamantanethiolate) has a multiple-shell structure with an Ag71 core protected by a shell of Ag70X12(S-Adm)40. The Ag71 core can be considered as 20 frequency-two Ag10 tetrahedra fused together with a dislocation that resembles multiple-twinning in nanoparticles. The nanocluster…

research product

Asymmetric Synthesis of Chiral Bimetallic [Ag28Cu12(SR)24]4- Nanoclusters via Ion Pairing

In this work, a facile ion-pairing strategy for asymmetric synthesis of optically active negatively charged chiral metal nanoparticles using chiral ammonium cations is demonstrated. A new thiolated chiral three-concentric-shell cluster, [Ag28Cu12(SR)24] 4- was first synthesized as a racemic mixture and characterized by single-crystal X-ray structure determination. Mass spectrometric measurements revealed relatively strong ion-pairing interactions between the anionic nanocluster and ammonium cations. Inspired by this observation, the as-prepared racemic mixture was separated into enantiomers by employing chiral quaternary ammonium salts as chiral resolution agents. Subsequently, direct asymm…

research product

Total Structure and Electronic Structure Analysis of Doped Thiolated Silver [MAg24(SR)18]2– (M = Pd, Pt) Clusters

With the incorporation of Pd or Pt atoms, thiolated Ag-rich 25-metal-atom nanoclusters were successfully prepared and structurally characterized for the first time. With a composition of [PdAg24(SR)18](2-) or [PtAg24(SR)18](2-), the obtained 25-metal-atom nanoclusters have a metal framework structure similar to that of widely investigated Au25(SR)18. In both clusters, a M@Ag12 (M = Pd, Pt) core is capped by six distorted dimeric -RS-Ag-SR-Ag-SR- units. However, the silver-thiolate overlayer gives rise to a geometric chirality at variance to Au25(SR)18. The effect of doping on the electronic structure was studied through measured optical absorption spectra and ab initio analysis. This work d…

research product

Highly Robust but Surface-Active: N-Heterocyclic Carbene-Stabilized Au25 Nanocluster as a Homogeneous Catalyst

<div> <div> <div> <p>Surface organic ligands play a critical role in stabilizing atomically precise metal nanoclusters in solutions. However, it is still challenging to prepare highly robust ligated metal nanoclusters that are surface-active for liquid-phase catalysis without any pre-treatment. Herein, we report a novel N-heterocyclic carbine-stabilized Au25 nanocluster with high thermal and air stabilities as a homogenous catalyst for cycloisomerization of alkynyl amines to indoles. The nanocluster, characterized as [Au25(iPr2-bimy)10Br7]2+ (iPr2-bimy=diisopropyl-benzilidazolium) (1), was synthesized by direct reduction of AuSMe2Cl and iPr2- bimyAuBr with NaBH4 in o…

research product

Asymmetric Synthesis of Chiral Bimetallic [Ag28Cu12(SR)24]4– Nanoclusters via Ion Pairing

In this work, a facile ion-pairing strategy for asymmetric synthesis of optically active negatively charged chiral metal nanoparticles using chiral ammonium cations is demonstrated. A new thiolated chiral three-concentric-shell cluster, [Ag28Cu12(SR)24]4–, was first synthesized as a racemic mixture and characterized by single-crystal X-ray structure determination. Mass spectrometric measurements revealed relatively strong ion-pairing interactions between the anionic nanocluster and ammonium cations. Inspired by this observation, the as-prepared racemic mixture was separated into enantiomers by employing chiral quaternary ammonium salts as chiral resolution agents. Subsequently, direct asymm…

research product

Highly Robust but Surface‐Active: An N‐Heterocyclic Carbene‐Stabilized Au 25 Nanocluster

Surface organic ligands play a critical role in stabilizing atomically precise metal nanoclusters in solutions. However, it is still challenging to prepare highly robust ligated metal nanoclusters that are surface-active for liquid-phase catalysis without any pre-treatment. Now, an N-heterocyclic carbene-stabilized Au25 nanocluster with high thermal and air stabilities is presented as a homogenous catalyst for cycloisomerization of alkynyl amines to indoles. The nanocluster, characterized as [Au25 (i Pr2 -bimy)10 Br7 ]2+ (i Pr2 -bimy=1,3-diisopropylbenzimidazolin-2-ylidene) (1), was synthesized by direct reduction of AuSMe2 Cl and i Pr2 -bimyAuBr with NaBH4 in one pot. X-ray crystallization…

research product

From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au13 Cu2 Nanoclusters

A general method, using mixed ligands (here diphosphines and thiolates) is devised to turn an achiral metal cluster, Au13 Cu2 , into an enantiomeric pair by breaking (lowering) the overall molecular symmetry with the ligands. Using an achiral diphosphine, a racemic [Au13 Cu2 (DPPP)3 (SPy)6 ]+ was prepared which crystallizes in centrosymmetric space groups. Using chiral diphosphines, enantioselective synthesis of an optically pure, enantiomeric pair of [Au13 Cu2 ((2r,4r)/(2s,4s)-BDPP)3 (SPy)6 ]+ was achieved in one pot. Their circular dichroism (CD) spectra give perfect mirror images in the range of 250-500 nm with maximum anisotropy factors of 1.2×10-3 . DFT calculations provided good corre…

research product

Site Preference in Multimetallic Nanoclusters: Incorporation of Alkali Metal Ions or Copper Atoms into the Alkynyl-Protected Body-Centered Cubic Cluster [Au7Ag8(C≡CtBu)12]+

The synthesis, structure, substitution chemistry, and optical properties of the gold-centered cubic monocationic cluster [Au@Ag8@Au6(C≡CtBu)12]+ are reported. The metal framework of this cluster can be described as a fragment of a body-centered cubic (bcc) lattice with the silver and gold atoms occupying the vertices and the body center of the cube, respectively. The incorporation of alkali metal atoms gave rise to [MnAg8−nAu7(C≡CtBu)12]+ clusters (n=1 for M=Na, K, Rb, Cs and n=2 for M=K, Rb), with the alkali metal ion(s) presumably occupying the vertex site(s), whereas the incorporation of copper atoms produced [CunAg8Au7−n(C≡CtBu)12]+ clusters (n=1–6), with the Cu atom(s) presumably occup…

research product

CCDC 1916156: Experimental Crystal Structure Determination

Related Article: Hui Shen, Guocheng Deng, Sami Kaappa, Tongde Tan, Ying-Zi Han, Sami Malola, Shui-Chao Lin, Boon K. Teo, Hannu Häkkinen, Nanfeng Zheng|2019|Angew.Chem.,Int.Ed.|58|17731|doi:10.1002/anie.201908983

research product