6533b870fe1ef96bd12cf3b2
RESEARCH PRODUCT
Asymmetric Synthesis of Chiral Bimetallic [Ag28Cu12(SR)24]4– Nanoclusters via Ion Pairing
Boon K. TeoHannu HäkkinenSami MalolaJuanzhu YanHai-feng SuHuayan YangChengyi HuShui-chao LinNanfeng Zhengsubject
asymmetric synthesisInorganic chemistrynanoclusters02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryCatalysisNanoclusterschemistry.chemical_compoundColloid and Surface ChemistryAmmoniumta116chemistry.chemical_classificationion pairingta114Chiral ligandEnantioselective synthesisGeneral Chemistry021001 nanoscience & nanotechnologyChiral resolution0104 chemical sciencesCrystallographychemistryRacemic mixtureCounterionEnantiomer0210 nano-technologydescription
In this work, a facile ion-pairing strategy for asymmetric synthesis of optically active negatively charged chiral metal nanoparticles using chiral ammonium cations is demonstrated. A new thiolated chiral three-concentric-shell cluster, [Ag28Cu12(SR)24]4–, was first synthesized as a racemic mixture and characterized by single-crystal X-ray structure determination. Mass spectrometric measurements revealed relatively strong ion-pairing interactions between the anionic nanocluster and ammonium cations. Inspired by this observation, the as-prepared racemic mixture was separated into enantiomers by employing chiral quaternary ammonium salts as chiral resolution agents. Subsequently, direct asymmetric synthesis of optically active enantiomers of [Ag28Cu12(SR)24]4– was achieved by using appropriate chiral ammonium cations (such as N-benzylcinchoninium vs N-benzylcinchonidinium) in the cluster synthesis. These simple strategies, ion-pairing enantioseparation and direct asymmetric synthesis using chiral counterion...
year | journal | country | edition | language |
---|---|---|---|---|
2016-09-23 | Journal of the American Chemical Society |