0000000000370673

AUTHOR

Sylvain Jeandroz

TheMedicago truncatulahypermycorrhizal B9 mutant displays an altered response to phosphate and is more susceptible toAphanomyces euteiches

Inorganic phosphate (Pi) plays a key role in the development of arbuscular mycorrhizal (AM) symbiosis, which is favoured when Pi is limiting in the environment. We have characterized the Medicago truncatula hypermycorrhizal B9 mutant for its response to limiting (P/10) and replete (P2) Pi. On P2, mycorrhization was significantly higher in B9 plants than in wild-type (WT). The B9 mutant displayed hallmarks of Pi-limited plants, including higher levels of anthocyanins and lower concentrations of Pi in shoots than WT plants. Transcriptome analyses of roots of WT and B9 plants cultivated on P2 or on P/10 confirmed the Pi-limited profile of the mutant on P2 and highlighted its altered response t…

research product

Current view of nitric oxide-responsive genes in plants

International audience; Significant efforts have been directed towards the identification of genes differentially regulated through nitric oxide (NO)-dependent processes. These efforts comprise the use of medium- and large-scale transcriptomic analyses including microarray and cDNA-amplification fragment length polymorphism (AFLP) approaches. Numerous putative NO-responsive genes have been identified in plant tissues and cell suspensions with transcript levels altered by artificially released NO, or endogenously produced. Comparative analysis of the data from such transcriptomic analyses in Arabidopsis reveals that a significant part of these genes encode proteins related to plant adaptive …

research product

Ribosomal DNA genes in Fraxinus : Organisation and detection of hybridization beetween F. excelsior l and F. oxyphylla Bieb rDNA spacer probes

National audience

research product

NO signaling in cryptogein-induced immune responses in tobacco

research product

Regulation and role of nitric oxide production in Arabidopsis thaliana defense responses induced by oligogalacturonides

SPEIPM; International audience

research product

NO signaling in cryptogein-induced immune responses in tobacco

SPEIPM; International audience

research product

S-nitrosylation: An emerging post-translational protein modification in plants

International audience; Increasing evidences support the assumption that nitric oxide (NO) acts as a physiological mediator in plants. Understanding its pleiotropic effects requires a deep analysis of the molecular mechanisms underlying its mode of action. In the recent years, efforts have been made in the identification of plant proteins modified by NO at the post-translational level, notably by S-nitrosylation. This reversible process involves the formation of a covalent bond between NO and reactive cysteine residues. This research has now born fruits and numerous proteins regulated by S-nitrosylation have been identified and characterized. This review describes the basic principle of S-n…

research product

Interaction between Medicago truncatula and the pathogenic oomycete Aphanomyces euteiches: effects of nitrogen nutrition and plant genotype

Plants are under the constant threat of microbial pathogens. To defend themselves, plants have developed immune responses (including for example synthesis of antimicrobial secondary metabolites, production of PR proteins or reinforcement of cell wall) that can lead to resistance. However, these plant defense responses are costly and lead plants to continuously face a dilemma regarding the partitioning of their available resources. In order to better understand relationships between plant nutrition and defense, we analyzed the impact of nitrogen (N) nutrition on the capacity of different M. truncatula genotypes to resist against A. euteiches, the causal agent of legume root rot disease. N st…

research product

Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants

 voir Addenda, notes additionnelles complétant l'article : "Dahan, J., Hammoudi, V., Wendehenne, D., Bourque, S. (2011). Type 2 histone deacetylases play a major role in the control of elicitor-induced cell death in tobacco. Plant signaling & behavior, 6 (11), 1865-1867. DOI : 10.4161/psb.6.11.17848".; International audience; Plant resistance to pathogen attack is often associated with a localized programmed cell death called hypersensitive response (HR). How this cell death is controlled remains largely unknown. Upon treatment with cryptogein, an elicitor of tobacco defence and cell death, we identified NtHD2a and NtHD2b, two redundant isoforms of type-2 nuclear histone deacetylases (HDACs…

research product

Effet de la nutrition azotée et du génotype de la plante sur la résistance de Medicago truncatula à Aphanomyces euteiches

research product

Evolutionary diversification of type-2 HDAC structure, function and regulation in Nicotiana tabacum

Ministère de l'Education Nationale et de la Recherche ; Conseil Régional de Bourgogne (PARI AGRALE8) ; Association pour la Recherche sur les Nicotianacées ; Conseil Régional de Bourgogne; International audience; Type-2 HDACs (HD2s) are plant-specific histone deacetylases that play diverse roles during development and in responses to biotic and abiotic stresses. In this study we characterized the six tobacco genes encoding HD2s that mainly differ by the presence or the absence of a typical zinc finger in their C-terminal part. Of particular interest, these HD2 genes exhibit a highly conserved intron/exon structure. We then further investigated the phylogenetic relationships among the HD2 gen…

research product

Le monoxyde d’azote

Le monoxyde d’azote (NO) est un mediateur physiologique associe a divers processus chez les animaux, dont l’immunite. Des travaux conduits recemment montrent que les plantes, confrontees a l’attaque d’agents pathogenes, produisent egalement du NO. Le NO est donc un acteur des voies de signalisation cellulaire activees en reponse a la reconnaissance par les plantes d’agresseurs exterieurs. L’etude des molecules cibles du NO et, plus particulierement, la caracterisation de proteines S-nitrosylees, a permis d’avoir un premier apercu des mecanismes fins inherents a ses fonctions. Le NO serait ainsi implique dans l’activation ainsi que dans la desensibilisation des voies de signalisation mobilis…

research product

Plant responses to biotic/abiotic stresses: lessons from cell signalin

prod 2017-284a SPE IPM UB AGROSUP CNRS CT; International audience; About this Research Topic : Facing up to stressful conditions imposed by their environment that could affect their growth and their development throughout their life cycle, plants must be able to perceive, to process and to translate different stimuli into adaptive responses. From a human point of view, knowledge about plant stress response is also vital for the development of breeding and biotechnological strategies to improve stress tolerance in crops. Understanding the organism-coordinated responses involves fine description of the mechanisms occurring at the cellular and molecular level. These mechanisms involve numerous…

research product

Emerging functions of nitric oxide in plant immunity

SPEIPMUBAgrosupCNRS; The importance of nitric oxide (NO) in innate and adaptive immunity in mammals is well recognised. NO exerts antimicrobial properties against invaders but also displays immunoregulatory functions in which S-nitrosylation represents a signalling process of major importance. Over the last two decades, a growing body of evidence suggests that NO is also a major component of plant immunity. Our understanding of its role in plant defence has been enriched by the identification and functional analysis of S-nitrosylated proteins. The recent identification of new S-nitrosylated proteins including the chaperone-like enzyme cell division cycle 48 (CDC48), histone deacetylases (HD…

research product

POLYSACCHARIDE COMPOUNDS AND USE OF SAME FOR STIMULATING DEFENCE RESPONSES OF PLANTS AGAINST PATHOGENIC MICROORGANISMS

The present invention relates to novel oligogalacturonans having a degree of methylation of 0 and a degree of polymerisation of 1 to 10, and to use there of for stimulating defence responses of plants against pathogenic microorganisms.

research product

Study of oligogalacturonides-triggered Nitric Oxide (NO) production provokes new questioning about the origin of NO biosynthesis in plants

Addendum to: Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, et al. Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell Environ 2012; PMID:22394204; http://dx.doi. org/10.1111/j.1365-3040.2012.02505.x.; International audience; We investigated the production and function of nitric oxide (NO) in Arabidopsis thaliana leaf discs as well as whole plants elicited by oligogalacturonides (OGs). Using genetic, biochemical and pharmacological approaches, we provided evidence that OGs induced a Nitrate Reductase (NR)-dependent NO production together with an increased NR activity and NR tran…

research product

Effects of plant nutrition and genotype on Medicago truncatula defense responses against Aphanomyces euteiches

SPEIPM; International audience

research product

Phylogénie et paléographie des truffes

National audience

research product

Plants and Arbuscular Mycorrhizal Fungi: Cues and Communication in the Early Steps of Symbiotic Interactions

Abstract The ubiquitous nature of arbuscular mycorrhiza (AM) pleads for common molecular and genetic determinants across different plant taxa. The cellular processes determining compatibility in early interactions prior to and during cell contact between arbuscular mycorrhizal fungi and plant roots are starting to be unraveled. The root epidermis is an active checkpoint where signal exchanges and control over root colonization occur. Root‐secreted flavonoids, flavonols, and strigolactones can act as rhizosphere signals in stimulating presymbiotic fungal growth, although their mechanism of action on the fungal cell is as yet unknown. Likewise, fungal signals (Myc factors) activate early plan…

research product

Role of nitric oxide synthase (NOS) of Klebsormidium nitens: Identification and characterization of partners

National audience; Nitric oxide (NO) is an important cellular signaling molecule across kingdoms. During bioticor abiotic stresses, NO burst is detected in both plants and mammals although no sequenceencoding the well described mammalian NO synthase (NOS) is highlighted in plants. Comparedto terrestrial plants, some algae present transcripts encoding the NOS-like enzyme. Amongthem, Klebsormidium nitens the model alga to study the early transition step from aquatic algaeto land plants is found. As mechanisms governing NO synthesis and signaling in green lineageremain unclear, the study of NOS from K. nitens (KnNOS) through (i) the identification ofregulator proteins, (ii) the identification …

research product

Role of nitric oxide synthases from Klebsormidium nitens: structural characterization and identification of protein partners

Nitric oxide (NO) is an important cellular signalling molecule regulating various physiological processes, in both animals andplants. In animals, NO synthesis is mainly catalysed by NO synthase (NOS) enzymes. During biotic or abiotic stresses, NOSlike activities that are sensitive to mammalian NOS inhibitors have been detected in plants, although no sequences encodingthe well described mammalian NOS are highlighted in land plants. Interestingly, we identified NOS-like sequences in 20 algaespecies. Among them, NOSs are found in Klebsormidium nitens the model alga to study the early transition step from aquaticalgae to land plants.As mechanisms governing NO synthesis and signalling in green l…

research product

NO Signalling in Plant Immunity

The importance of nitric oxide (NO) in innate and adaptive immunity in mammals is well recognised. NO exerts antimicrobial properties against invaders but also displays immunoregulatory functions in which S-nitrosylation represents a signalling process of major importance. Over the last two decades, a growing body of evidence suggests that NO is also a major component of plant immunity. Our understanding of its role in plant defence has been enriched by the identification and functional analysis of S-nitrosylated proteins. The recent identification of new S-nitrosylated proteins including the chaperone-like enzyme cell division cycle 48 (CDC48), histone deacetylases (HDACs) and calmodulin (…

research product

NO signaling in tobacco elicited by the MAMP cryptogein

SPEPôle IPM; International audience; During the past years, nitric oxide (NO) has been shown to be a major cell signaling messenger in plants. Its importance has been highlighted during plant responses to pathogen attack or MAMPs (microbe associated molecular patterns) and during induced resistance or priming phenomenon. The major focus of our research is to understand how nitric oxide can modulate the activity of protein involved in plant defense. We identified several proteins undergoing S-nitrosylation, a redox-based post-translational modification of proteins, in tobacco cells elicited by cryptogein, a 10 kDa protein produced by the oomycete Phytophthora cryptogea and inducing immune re…

research product

The evolution of nitric oxide signalling diverges between the animal and the green lineages

AbstractNitric oxide (NO) is a ubiquitous signalling molecule with widespread distribution in prokaryotes and eukaryotes where it is involved in countless physiological processes. While the mechanisms governing nitric oxide (NO) synthesis and signalling are well established in animals, the situation is less clear in the green lineage. Recent investigations have shown that NO synthase, the major enzymatic source for NO in animals, is absent in land plants but present in a limited number of algae. The first detailed analysis highlighted that these new NO synthases are functional but display specific structural features and probably original catalytic activities. Completing this picture, analy…

research product

Amélioration génétique de la moutarde brune (Brassica juncea) : Apports du marquage moléculaire pour la création de génotypes de type hiver

Un diaporama a été présenté lors de ces journéesSPEIPMCT2 (vu SJ)

research product

The Medicago truncatula hypermycorrhizal B9 mutant displays an altered response to phosphate and is more susceptible to Aphanomyces euteiches.

SPE IPM; National audience; Inorganic phosphate (Pi) plays a key role in the development of arbuscular mycorrhizal (AM) symbiosis, which is favoured when Pi is limiting in the environment. We have characterized the Medicago truncatula hypermycorrhizal B9 mutant for its response to limiting (P/10) and replete (P2) Pi. On P2, mycorrhization was significantly higher in B9 plants than in wild-type (WT). The B9 mutant displayed hallmarks of Pi-limited plants, including higher levels of anthocyanins and lower concentrations of Pi in shoots than WT plants. Transcriptome analyses of roots of WT and B9 plants cultivated on P2 or on P/10 confirmed the Pi-limited profile of the mutant on P2 and highli…

research product

Organisation de l'espaceur intergénique de l'ADN ribosomique nucléaire du Frêne commun (Fraxinus excelsior). Exploitation du polymorphisme moléculaire en reconnaissance d'espèces

*INRA BP 86510 21065 Dijon cedex (FRA) Diffusion du document : INRA BP 86510 21065 Dijon cedex (FRA) Diplôme : Dr. d'Université

research product

Role of nitric oxide synthases from klebsormidium nitens: first structural characterization and partners identification

Objectives: Nitric oxide (NO) is an important cellular signaling molecule regulating various physiologicalprocesses, in both animals and plants. In animals, NO synthesis is mainly catalyzed by NO synthase(NOS) enzymes. In plants, NOS-like activities sensitive to mammalian NOS inhibitors have beenmeasured, although no sequences encoding mammalian NOSs have been found in land plants.Interestingly, we identified NOS-like sequences in 20 algae species. These latter include thefilamentous charophyte green algae Klebsormidium nitens, a biological model to study the earlytransition step from aquatic algae to land plants. In order to understand the mechanisms governingNO synthesis and signaling in …

research product

Le stress biotique, le décorticage ou la variété influencent la présence d'off-flavors dans la farine de pois

National audience

research product

Effects of nitrogen nutrition and plant genotype on Medicago truncatula resistance against Aphanomyces euteiches

research product

Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana

Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. In this study, we investigated the production and/or function of NO in Arabidopsis thaliana leaf discs and plants elicited by oligogalacturonides (OGs) and challenged with Botrytis cinerea. We provided evidence that OGs triggered a fast and long lasting NO production which was Ca(2+) dependent and involved nitrate reductase (NR). Accordingly, OGs triggered an increase of both NR activity and transcript accumulation. NO production was also sensitive to the mammalian NO synthase inhibitor L-NAME. Intriguingly, we showed that L-NAME affected NO production by interfering with NR activity, t…

research product

Nitric Oxide Signalling in Plants: Cross-Talk With Ca2+, Protein Kinases and Reactive Oxygen Species

International audience; Nitric oxide (NO) is a gaseous free radical recognized as a ubiquitous signal transducer that contributes to various biological processes in animals. It exerts most of its effects by regulating the activities of various proteins including Ca2+ channels, protein kinases and transcription factors. In plants, studies conducted over the past ten years revealed that NO also functions as an endogenous mediator in diverse physiological processes ranging from root development to stomatal closure. Its biological role as an intracellular plant messenger molecule, however, remains poorly understood. Here, we review the molecular basis of NO signaling in animals and discuss curr…

research product

Identification of Partner Proteins of the Algae Klebsormidium nitens NO Synthases: Toward a Better Understanding of NO Signaling in Eukaryotic Photosynthetic Organisms

In animals, NO is synthesized from L-arginine by three isoforms of nitric oxide synthase (NOS) enzyme. NO production and effects have also been reported in plants but the identification of its sources, especially the enzymatic ones, remains one of the critical issues in the field. NOS-like activities have been reported, although there are no homologs of mammalian NOS in the land plant genomes sequenced so far. However, several NOS homologs have been found in algal genomes and transcriptomes. A first study has characterized a functional NOS in the chlorophyte Ostreococcus tauri and the presence of NOS homologs was later confirmed in a dozen algae. These results raise the questions of the sig…

research product

Nitric oxide synthase in plants: Where do we stand?

International audience

research product

Protein S-nitrosylation: What's going on in plants?

International audience; Nitric oxide (NO) is now recognized as a key regulator of plant physiological processes. Understanding the mechanisms by which NO exerts its biological functions has been the subject of extensive research. Several components of the signaling pathways relaying NO effects in plants, including second messengers, protein kinases, phytohormones, and target genes, have been characterized. In addition, there is now compelling experimental evidence that NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation and tyrosine nitration. Recently, proteome-wide scale analyses led to the identification of numerous protein candidates for S-…

research product

Nitric oxide production and signalling in algae

International audience

research product

Nitric oxide signaling in plants: cross-talk with Ca2+, protein kinases and reactive oxygen species

research product

There's More to the Picture Than Meets the Eye: Nitric Oxide Cross Talk with Ca2+ Signaling

Abstract Calcium and nitric oxide (NO) are two important biological messengers. Increasing evidence indicates that Ca2+ and NO work together in mediating responses to pathogenic microorganisms and microbe-associated molecular patterns. Ca2+ fluxes were recognized to account for NO production, whereas evidence gathered from a number of studies highlights that NO is one of the key messengers mediating Ca2+ signaling. Here, we present a concise description of the current understanding of the molecular mechanisms underlying the cross talk between Ca2+ and NO in plant cells exposed to biotic stress. Particular attention will be given to the involvement of cyclic nucleotide-gated ion channels and…

research product

Etude du rôle du monoxyde d’azote (NO) dans la réponse du transcriptome d’Arabidopsis thaliana aux oligogalacturonides, un éliciteur des réactions de défense

SPEIPM; International audience; Le monoxyde d’azote (NO) est capable de réguler chez les plantes de nombreux processus physiologiques dont les réponses des plantes aux pathogènes. Peu d’informations sont disponibles aujourd’hui sur les mécanismes expliquant le rôle du NO endogène dans ce contexte physiologique. Grâce à une étude transcriptomique, nous avons caractérisé chez Arabidopsis thaliana, des gènes cibles du NO produit en réponse à un éliciteur des réactions de défense, les oligogalacturonides (OG). L’analyse a permis d’identifier parmi ces gènes cibles, un nombre important de gènes impliqués dans les réponses aux stress biotiques tels que des facteurs de transcription ou des protéin…

research product

Effets de la nutrition et du génotype de la plante sur la résistance de Medicago truncatula à Aphanomyces euteiches

SPEIPMUBAGROSUPINRA; Dans la nature, les plantes ont la capacité de mettre en oeuvre des réponses immunitaires pour faire face aux microorganismes pathogènes. Cependant, ces réponses de défense sont coûteuses en énergie et conduisent la plante à détourner une partie de ces ressources destinées à d’autres traits de vie comme la croissance. Ce compromis défense/croissance est largement conditionné par la disponibilité extérieure en nutriments. Afin de mieux décrire et comprendre les liens entre la nutrition et la défense, nous avons analysé l’impact de la nutrition azotée et l’effet de la variabilité génétique végétale sur la capacité de la légumineuse Medicago truncatula à résister à un agen…

research product

NO signaling in plant immunity: A tale of messengers

International audience; Nitric oxide (NO) is a free radical gas involved in a myriad of plant physiological processes including immune responses. How NO mediates its biological effects in plant facing microbial pathogen attack is an unresolved question. Insights into the molecular mechanisms by which it propagates signals reveal the contribution of this simple gas in complex signaling pathways shared with reactive oxygen species (ROS) and the second messenger Ca2+. Understanding of the subtle cross-talks operating between these signals was greatly improved by the recent identification and the functional analysis of proteins regulated through S-nitrosylation, a major NO-dependent post-transl…

research product

Cold-evoked NO controls cold-responsivegene expression and modulates proteinS-nitrosylation status in Arabidopsis

International audience; We previously reported that the exposure of Arabidopsis thaliana to low temperature triggers a rapid productionof NO required for the proper regulation of cold-responsive gene markers. To identify the network of genes targetedby NO during cold response, we carried out a global transcriptomic analysis of Arabidopsis leaves impaired for NOformation by cPTIO infiltration...

research product

Nitric Oxide in Plants: Production and Cross-talk with Ca2+ Signaling

International audience; Nitric oxide (NO) is a diatomic gas that performs crucial functions in a wide array of physiological processes in animals. The past several years have revealed much about its roles in plants. It is well established that NO is synthesized from nitrite by nitrate reductase (NR) and via chemical pathways. There is increasing evidence for the occurrence of an alternative pathway in which NO production is catalysed from L-arginine by a so far non-identified enzyme. Contradictory results have been reported regarding the respective involvement of these enzymes in specific physiological conditions. Although much remains to be proved, we assume that these inconsistencies can …

research product

Production et signalisation dépendante du monoxyde d'azote dans la lignée verte la surprise des microalgues

National audience

research product