0000000000371396

AUTHOR

Henri Saarikoski

0000-0001-6155-0119

Pfaffian and fragmented states atν=52in quantum Hall droplets

When a gas of electrons is confined to two dimensions, application of a strong magnetic field may lead to startling phenomena such as emergence of electron pairing. According to a theory this manifests itself as appearance of the fractional quantum Hall effect with a quantized conductivity at an unusual half-integer v=5/2 Landau level filling. Here we show that similar electron pairing may occur in quantum dots where the gas of electrons is trapped by external electric potentials into small quantum Hall droplets. However, we also find theoretical and experimental evidence that, depending on the shape of the external potential, the paired electron state can break down, which leads to a fragm…

research product

Coreless Vortices in Rotating Two-Component Quantum Droplets

The rotation of a quantum liquid induces vortices to carry angular momentum. When the system is composed of multiple components that are distinguishable from each other, vortex cores in one component may be filled by particles of the other component, and coreless vortices form. Based on evidence from computational methods, here we show that the formation of coreless vortices occurs very similarly for repulsively interacting bosons and fermions, largely independent of the form of the particle interactions. We further address the connection to the Halperin wave functions of non-polarized quantum Hall states.

research product

Vortices in quantum droplets: Analogies between boson and fermion systems

The main theme of this review is the many-body physics of vortices in quantum droplets of bosons or fermions, in the limit of small particle numbers. Systems of interest include cold atoms in traps as well as electrons confined in quantum dots. When set to rotate, these in principle very different quantum systems show remarkable analogies. The topics reviewed include the structure of the finite rotating many-body state, universality of vortex formation and localization of vortices in both bosonic and fermionic systems, and the emergence of particle-vortex composites in the quantum Hall regime. An overview of the computational many-body techniques sets focus on the configuration interaction …

research product

Vortices in rotating two-component boson and fermion traps

Quantum liquids may carry angular momentum by the formation of vortex states. This is well known for Bose-Einstein condensates in rotating traps, and was even found to occur in quantum dots at strong magnetic fields. Here we consider a two-component quantum liquid, where coreless vortices and interlaced lattices of coreless vortices appear in a very similar way for fermions and bosons with repulsive two-body interactions. The ground states at given angular momentum, as well as the pair correlations for equal and different numbers of atoms in the two components, are studied. (C) 2009 Elsevier B.V. All rights reserved.

research product