0000000000372292
AUTHOR
Sabine Muth
Dermal CD207-Negative Migratory Dendritic Cells Are Fully Competent to Prime Protective, Skin Homing Cytotoxic T-Lymphocyte Responses
Dendritic cells (DCs) are important inducers and regulators of T-cell responses. They are able to activate and modulate the differentiation of CD4+ and CD8+ T cells. In the skin, there are at least five phenotypically distinct DC subpopulations that can be distinguished by differential expression of the cell surface markers CD207, CD103, and CD11b. Previous studies have suggested that dermal CD11b−CD207+ conventional type 1 DCs are indispensable for the priming of a skin homing cytotoxic T-lymphocyte response. However, conventional type 1 DCs are also the only skin DC subset capable of cross-presenting exogenous antigens on major histocompatibility complex class I. Thus, it remained unclear…
Regulation of the tolerogenic function of steady-state DCs
Dendritic cells (DCs) are master regulators of T-cell responses. After sensing pathogen-derived molecular patterns (PAMPs), or signals of inflammation and cellular stress, DCs differentiate into potent activators of naive CD4(+) and CD8(+) T cells through a process that is termed DC maturation. By contrast, DCs induce and maintain peripheral T-cell tolerance in the steady state, that is in the absence of overt infection or inflammation. However, the immunological steady state is not devoid of DC-activating stimuli, such as commensal microorganisms, subclinical infections, or basal levels of proinflammatory mediators. In the presence of these activating stimuli, DC maturation must be calibra…
Microbiota-Induced Type I Interferons Instruct a Poised Basal State of Dendritic Cells
Summary Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a spec…
Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo
The quality of the adaptive immune response depends on the differentiation of distinct CD4(+) helper T cell subsets, and the magnitude of an immune response is controlled by CD4(+)Foxp3(+) regulatory T cells (Treg cells). However, how a tissue- and cell type-specific suppressor program of Treg cells is mechanistically orchestrated has remained largely unexplored. Through the use of Treg cell-specific gene targeting, we found that the suppression of allergic immune responses in the lungs mediated by T helper type 2 (TH2) cells was dependent on the activity of the protein kinase CK2. Genetic ablation of the β-subunit of CK2 specifically in Treg cells resulted in the proliferation of a hithert…
A CD40/CD40L feedback loop drives the breakdown of CD8+T-cell tolerance following depletion of suppressive CD4+T cells
Dendritic cells (DCs) are the key APCs not only for the priming of naive T cells, but also for the induction and maintenance of peripheral T-cell tolerance. We have recently shown that cognate interactions between Foxp3(+) Tregs and steady-state DCs are crucial to maintain the tolerogenic potential of DCs. Using DIETER mice, which allow the induction of antigen presentation selectively on DCs without altering their maturation status, we show here that breakdown of CD8(+) T-cell tolerance, which ensues after depletion of suppressive CD4(+) T cells, is driven by a positive feedback loop in which autoreactive CD8(+) T cells activate DCs via CD40. These data identify ligation of CD40 on DCs as …
Release of dendritic cells from cognate CD4 + T-cell recognition results in impaired peripheral tolerance and fatal cytotoxic T-cell mediated autoimmunity
Resting dendritic cells (DCs) induce tolerance of peripheral T cells that have escaped thymic negative selection and thus contribute significantly to protection against autoimmunity. We recently showed that CD4 + Foxp3 + regulatory T cells (Tregs) are important for maintaining the steady-state phenotype of DCs and their tolerizing capacity in vivo. We now provide evidence that DC activation in the absence of Tregs is a direct consequence of missing DC–Treg interactions rather than being secondary to generalized autoimmunity in Treg-less mice. We show that DCs that lack MHC class II and thus cannot make cognate interactions with CD4 + T cells are completely unable to induce peripheral CD8 +…