0000000000372436

AUTHOR

Vanni Caruso

0000-0002-0523-6149

showing 2 related works from this author

Adipose Stromal/Stem Cell-Derived Extracellular Vesicles: Potential Next-Generation Anti-Obesity Agents

2022

Over the last decade, several compounds have been identified for the treatment of obesity. However, due to the complexity of the disease, many pharmacological interventions have raised concerns about their efficacy and safety. Therefore, it is important to discover new factors involved in the induction/progression of obesity. Adipose stromal/stem cells (ASCs), which are mostly isolated from subcutaneous adipose tissue, are the primary cells contributing to the expansion of fat mass. Like other cells, ASCs release nanoparticles known as extracellular vesicles (EVs), which are being actively studied for their potential applications in a variety of diseases. Here, we focused on the importance …

obesityAdipogenesisQH301-705.5Organic ChemistrySubcutaneous FatMesenchymal Stem CellsGeneral Medicinemetabolic disease/syndromeSettore BIO/09 - FisiologiaCatalysisComputer Science Applicationsadipose tissueInorganic ChemistryChemistrySettore BIO/14 - Farmacologiaadipose stromal/stem cells (ASCs)Adipose stromal/stem cells (ASCs) Adipose tissue Extracellular vesicles Metabolic disease/syndrome ObesityHomeostasisHumansPhysical and Theoretical ChemistryBiology (General)extracellular vesiclesMolecular BiologyQD1-999SpectroscopyInternational Journal of Molecular Sciences
researchProduct

Asperuloside Enhances Taste Perception and Prevents Weight Gain in High-Fat Fed Mice

2021

Asperuloside is an iridoid glycoside found in many medicinal plants that has produced promising anti-obesity results in animal models. In previous studies, three months of asperuloside administration reduced food intake, body weight, and adipose masses in rats consuming a high fat diet (HFD). However, the mechanisms by which asperuloside exerts its anti-obesity properties were not clarified. Here, we investigated homeostatic and nutrient-sensing mechanisms regulating food intake in mice consuming HFD. We confirmed the anti-obesity properties of asperuloside and, importantly, we identified some mechanisms that could be responsible for its therapeutic effect. Asperuloside reduced body weight …

Blood GlucoseLeptinMalecannabinoid (CB) receptor 10301 basic medicineTastePro-Opiomelanocortinfood intakeEndocrinology Diabetes and MetabolismAdipose tissueWeight Gainnutrient-sensing mechanismslcsh:Diseases of the endocrine glands. Clinical endocrinologyCyclopentane MonoterpenesEnergy homeostasisMiceEndocrinology0302 clinical medicineGlucosidesWeight lossInsulinasperuloside; cannabinoid (CB) receptor 1; CD36; FFAR1-4; food intake; nutrient-sensing mechanisms; TAS1R2-3; weight lossReceptorOriginal ResearchLeptindigestive oral and skin physiologyTaste PerceptionGhrelinTAS1R2-3Ghrelinmedicine.symptommedicine.medical_specialtyHypothalamusBiologyDiet High-Fatasperuloside03 medical and health sciencesInternal medicinemedicineAnimalsPyranslcsh:RC648-665Body WeightFFAR1-4030104 developmental biologyEndocrinologyAnti-Obesity Agentsweight lossEnergy IntakeCD36Weight gain030217 neurology & neurosurgery
researchProduct