0000000000372656

AUTHOR

Pascal Vairac

showing 3 related works from this author

Recent improvements on micro-thermocouple based SThM

2017

The scanning thermal microscope (SThM) has become a versatile tool for local surface temperature mapping or measuring thermal properties of solid materials. In this article, we present recent improvements in a SThM system, based on a micro-wire thermocouple probe associated with a quartz tuning fork for contact strength detection. Some results obtained on an electrothermal micro-hotplate device, operated in active and passive modes, allow demonstrating its performance as a coupled force detection and thermal measurement system.

010302 applied physicsHistoryMicroscopeMaterials scienceSystem of measurementQuartz tuning forkNanotechnologyContact strength02 engineering and technologySolid material021001 nanoscience & nanotechnology01 natural sciencesComputer Science ApplicationsEducationlaw.inventionThermocouplelaw0103 physical sciencesThermal0210 nano-technologyTemperature mappingJournal of Physics: Conference Series
researchProduct

Microfabricated high temperature sensing platform dedicated to scanning thermal microscopy (SThM)

2018

Abstract The monitoring of heat flux is becoming more and more critical for many materials and structures approaching nanometric dimensions. Scanning Thermal Microscopy (SThM) is one of the tools available for thermal measurement at the nanoscale and requires calibration. Here we report on a micro-hotplate device made of a platinum heater suspended on thin silicon nitride (SiN) membranes integrating specific features for SThM calibration. These heated reference samples can include a localized resistive temperature sensors (RTD) or standalone platinum membranes (typically 10 × 10 μm2) on which the temperature can be measured precisely. This functional area is dedicated to (1) estimate the th…

010302 applied physicsResistive touchscreenMaterials scienceFabricationbusiness.industryThermal resistanceMetals and Alloys02 engineering and technologyScanning thermal microscopy021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesTemperature measurementSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOperating temperatureThermocouple0103 physical sciencesMicroscopyOptoelectronicsElectrical and Electronic Engineering0210 nano-technologybusinessInstrumentation
researchProduct

Experimental evidence of high spatial confinement of elastic energy in a phononic cantilever

2021

We report on experimental high spatial confinement of elastic energy in a silicon phononic cantilever for which the quality factor of a higher-order flexural resonance is increased by a factor of 27 (from Q ∼ 80 to Q ∼ 2130) with the use of a three-row phononic crystal (PnC) strip. As shown by numerical simulations performed with the finite element method, the PnC both reduces anchor loss and confines elastic energy inside the cantilever. The PnC and the cantilever are fabricated with standard clean room techniques on a silicon on insulator substrate. Optical measurements of the out-of-plane displacements are performed with a laser scanning interferometer in a frequency range around 2 MHz.

Materials scienceCantileverPhysics and Astronomy (miscellaneous)SiliconPhysics::Instrumentation and Detectors[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronicschemistry.chemical_elementSilicon on insulator02 engineering and technologySubstrate (electronics)[SPI.MAT] Engineering Sciences [physics]/Materials01 natural sciences0103 physical sciences010302 applied physics[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph]business.industryElastic energyResonance021001 nanoscience & nanotechnologyFinite element methodComputer Science::OtherInterferometrychemistryOptoelectronics0210 nano-technologybusiness
researchProduct