0000000000373091
AUTHOR
Jordi Munoz-mari
Retrieval of Physical Parameters With Deep Structured Kernel Regression
A Unified SVM Framework for Signal Estimation
This paper presents a unified framework to tackle estimation problems in Digital Signal Processing (DSP) using Support Vector Machines (SVMs). The use of SVMs in estimation problems has been traditionally limited to its mere use as a black-box model. Noting such limitations in the literature, we take advantage of several properties of Mercer's kernels and functional analysis to develop a family of SVM methods for estimation in DSP. Three types of signal model equations are analyzed. First, when a specific time-signal structure is assumed to model the underlying system that generated the data, the linear signal model (so called Primal Signal Model formulation) is first stated and analyzed. T…
A Survey on Gaussian Processes for Earth-Observation Data Analysis: A Comprehensive Investigation
Gaussian processes (GPs) have experienced tremendous success in biogeophysical parameter retrieval in the last few years. GPs constitute a solid Bayesian framework to consistently formulate many function approximation problems. This article reviews the main theoretical GP developments in the field, considering new algorithms that respect signal and noise characteristics, extract knowledge via automatic relevance kernels to yield feature rankings automatically, and allow applicability of associated uncertainty intervals to transport GP models in space and time that can be used to uncover causal relations between variables and can encode physically meaningful prior knowledge via radiative tra…
Remote sensing image segmentation by active queries
Active learning deals with developing methods that select examples that may express data characteristics in a compact way. For remote sensing image segmentation, the selected samples are the most informative pixels in the image so that classifiers trained with reduced active datasets become faster and more robust. Strategies for intelligent sampling have been proposed with model-based heuristics aiming at the search of the most informative pixels to optimize model's performance. Unlike standard methods that concentrate on model optimization, here we propose a method inspired in the cluster assumption that holds in most of the remote sensing data. Starting from a complete hierarchical descri…
A kernel regression approach to cloud and shadow detection in multitemporal images
Earth observation satellites will provide in the next years time series with enough revisit time allowing a better surface monitoring. In this work, we propose a cloud screening and a cloud shadow detection method based on detecting abrupt changes in the temporal domain. It is considered that the time series follows smooth variations and abrupt changes in certain spectral features will be mainly due to the presence of clouds or cloud shadows. The method is based on linear and nonlinear regression analysis; in particular we focus on the regularized least squares and kernel regression methods. Experiments are carried out using Landsat 5 TM time series acquired over Albacete (Spain), and compa…
Pattern Recognition Scheme for Large-Scale Cloud Detection over Landmarks
Landmark recognition and matching is a critical step in many Image Navigation and Registration (INR) models for geostationary satellite services, as well as to maintain the geometric quality assessment (GQA) in the instrument data processing chain of Earth observation satellites. Matching the landmark accurately is of paramount relevance, and the process can be strongly impacted by the cloud contamination of a given landmark. This paper introduces a complete pattern recognition methodology able to detect the presence of clouds over landmarks using Meteosat Second Generation (MSG) data. The methodology is based on the ensemble combination of dedicated support vector machines (SVMs) dependent…
Systematic Assessment of MODTRAN Emulators for Atmospheric Correction
Atmospheric radiative transfer models (RTMs) simulate the light propagation in the Earth's atmosphere. With the evolution of RTMs, their increase in complexity makes them impractical in routine processing such as atmospheric correction. To overcome their computational burden, standard practice is to interpolate a multidimensional lookup table (LUT) of prestored simulations. However, accurate interpolation relies on large LUTs, which still implies large computation times for their generation and interpolation. In recent years, emulation has been proposed as an alternative to LUT interpolation. Emulation approximates the RTM outputs by a statistical regression model trained with a low number …
400– to 1000–nm imaging spectrometer based on acousto-optic tunable filters
An imaging spectrometer covering the 400-1000 nm band has been conceived and developed. The system is based on an Acousto-Optic Tunable Filter (AOTF) attached to a high performance digital camera. The AOTF permits the selection of spectral bands with an RF signal in the range of 70-210 MHz. The range is covered using two transducers attached to a single crystal. Although the idea is not new it covers a broader spectrum than previous systems. It includes a telecentric optical system that enhances system efficiency, by ensuring that the chief ray of each light cone emerges out of this doublet parallel to the optical axes. Additionally, an smart choice of integration time reduces the dependenc…
Kernel-based retrieval of atmospheric profiles from IASI data
This paper proposes the use of kernel ridge regression (KRR) to derive surface and atmospheric properties from hyperspectral infrared sounding spectra. We focus on the retrieval of temperature and humidity atmospheric profiles from Infrared Atmospheric Sounding Interferometer (MetOp-IASI) data, and provide confidence maps on the predictions. In addition, we propose a scheme for the identification of anomalies by supervised classification of discrepancies with the ECMWF estimates. For the retrieval, we observed that KRR clearly outperformed linear regression. Looking at the confidence maps, we observed that big discrepancies are mainly due to the presence of clouds and low emissivities in de…
Crane collision modelling using a neural network approach
Abstract The objective of the present work is to find a Collision Detection algorithm to be used in the Virtual Reality crane simulator (UVSim®), developed by the Robotics Institute of the University of Valencia for the Port of Valencia. The method is applicable to box-shaped objects and is based on the relationship between the colliding object positions and their impact points. The tool chosen to solve the problem is a neural network, the multilayer perceptron, which adapts to the characteristics of the problem, namely, non-linearity, a large amount of data, and no a priori knowledge. The results achieved by the neural network are very satisfactory for the case of box-shaped objects. Furth…
Graph matching for efficient classifiers adaptation
In this work we present an adaptation algorithm focused on the description of the measurement changes under different acquisition conditions. The adaptation is carried out by transforming the manifold in the first observation conditions into the corresponding manifold in the second. The eventually non-linear transform is based on vector quantization and graph matching. The transfer learning mapping is defined in an unsupervised manner. Once this mapping has been defined, the labeled samples in the first are projected into the second domain, thus allowing the application of any classifier in the transformed domain. Experiments on VHR series of images show the validity of the proposed method …
Multiset Kernel CCA for multitemporal image classification
The analysis of multitemporal remote sensing images is becoming an increasingly important problem because of the upcoming scenario of multispectral satellite constellations monitoring our Planet. Algorithms that can analyze such amount of heterogeneous information are necessary. While linear techniques have been extensively deployed, this work considers a kernel method that finds nonlinear correlations between all image sources and the class labels. We introduce in this context the Kernel Canonical Correlation Analysis (KCCA) to exploit the wealth of temporal image information and to handle nonlinear relations in a natural way via kernels. To achieve this goal, we use the generalization of …
Explicit Recursive and Adaptive Filtering in Reproducing Kernel Hilbert Spaces
This brief presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces. Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define the model recursivity in the Hilbert space. For that, we exploit some properties of functional analysis and recursive computation of dot products without the need of preimaging or a training dataset. We illustrate the feasibility of the methodology in the particular case of the $\gamma$ -filter, which is an infinite impulse response filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and elect…
Non-linear System Identification with Composite Relevance Vector Machines
Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the predictions, and it is less sensitive to free parameter selection. Teoría de la Señal y Comunicaciones
SCOPE-Based Emulators for Fast Generation of Synthetic Canopy Reflectance and Sun-Induced Fluorescence Spectra
Progress in advanced radiative transfer models (RTMs) led to an improved understanding of reflectance (R) and sun-induced chlorophyll fluorescence (SIF) emission throughout the leaf and canopy. Among advanced canopy RTMs that have been recently modified to deliver SIF spectral outputs are the energy balance model SCOPE and the 3D models DART and FLIGHT. The downside of these RTMs is that they are computationally expensive, which makes them impractical in routine processing, such as scene generation and retrieval applications. To bypass their computational burden, a computationally effective technique has been proposed by only using a limited number of model runs, called emulation. The idea …
Learning non-linear time-scales with kernel -filters
A family of kernel methods, based on the @c-filter structure, is presented for non-linear system identification and time series prediction. The kernel trick allows us to develop the natural non-linear extension of the (linear) support vector machine (SVM) @c-filter [G. Camps-Valls, M. Martinez-Ramon, J.L. Rojo-Alvarez, E. Soria-Olivas, Robust @c-filter using support vector machines, Neurocomput. J. 62(12) (2004) 493-499.], but this approach yields a rigid system model without non-linear cross relation between time-scales. Several functional analysis properties allow us to develop a full, principled family of kernel @c-filters. The improved performance in several application examples suggest…
Large scale semi-supervised image segmentation with active queries
A semiautomatic procedure to generate classification maps of remote sensing images is proposed. Starting from a hierarchical unsupervised classification, the algorithm exploits the few available labeled pixels to assign each cluster to the most probable class. For a given amount of labeled pixels, the algorithm returns a classified segmentation map, along with confidence levels of class membership for each pixel. Active learning methods are used to select the most informative samples to increase confidence in the class membership. Experiments on a AVIRIS hyperspectral image confirm the effectiveness of the method, especially when used with active learning query functions and spatial regular…
Divisive normalization image quality metric revisited.
Structural similarity metrics and information-theory-based metrics have been proposed as completely different alternatives to the traditional metrics based on error visibility and human vision models. Three basic criticisms were raised against the traditional error visibility approach: (1) it is based on near-threshold performance, (2) its geometric meaning may be limited, and (3) stationary pooling strategies may not be statistically justified. These criticisms and the good performance of structural and information-theory-based metrics have popularized the idea of their superiority over the error visibility approach. In this work we experimentally or analytically show that the above critic…
Physics-aware Gaussian processes in remote sensing
Abstract Earth observation from satellite sensory data poses challenging problems, where machine learning is currently a key player. In recent years, Gaussian Process (GP) regression has excelled in biophysical parameter estimation tasks from airborne and satellite observations. GP regression is based on solid Bayesian statistics, and generally yields efficient and accurate parameter estimates. However, GPs are typically used for inverse modeling based on concurrent observations and in situ measurements only. Very often a forward model encoding the well-understood physical relations between the state vector and the radiance observations is available though and could be useful to improve pre…
Configurable bandwidth imaging spectrometer based on acousto-optic tunable filter
This paper presents a new portable instrument called Autonomous Tunable Filtering System (ATFS), developed for highly customisable imaging spectrometry in the VIS-NIR range. The ATFS instrument consists of an Acousto-Optic Tunable Filter (AOTF), an optical system, a Radio Frequency (RF) driver based on a Direct Digital Synthesiser (DDS) and control software. The ATFS can be attached to a variety of high-performance monochrome cameras. The system works as a spectral bandpass filter whose wavelength can be selected between 400nm and 1000nm and whose bandwidth can be adjusted between 4nm and 50nm. The filter can be tuned electronically at a very high speed and accuracy, thanks to the DDS versa…
Integrating Domain Knowledge in Data-Driven Earth Observation With Process Convolutions
The modelling of Earth observation data is a challenging problem, typically approached by either purely mechanistic or purely data-driven methods. Mechanistic models encode the domain knowledge and physical rules governing the system. Such models, however, need the correct specification of all interactions between variables in the problem and the appropriate parameterization is a challenge in itself. On the other hand, machine learning approaches are flexible data-driven tools, able to approximate arbitrarily complex functions, but lack interpretability and struggle when data is scarce or in extrapolation regimes. In this paper, we argue that hybrid learning schemes that combine both approa…
Emulation as an Accurate Alternative to Interpolation in Sampling Radiative Transfer Codes
Computationally expensive radiative transfer models (RTMs) are widely used to realistically reproduce the light interaction with the earth surface and atmosphere. Because these models take long processing time, the common practice is to first generate a sparse look-up table (LUT) and then make use of interpolation methods to sample the multidimensional LUT input variable space. However, the question arise whether common interpolation methodsperform most accurate. As an alternative to interpolation, this paper proposes to use emulation, i.e., approximating the RTM output by means of the statistical learning. Two experiments were conducted to assess the accuracy in delivering spectral outputs…
Learning User's Confidence for Active Learning
In this paper, we study the applicability of active learning in operative scenarios: more particularly, we consider the well-known contradiction between the active learning heuristics, which rank the pixels according to their uncertainty, and the user's confidence in labeling, which is related to both the homogeneity of the pixel context and user's knowledge of the scene. We propose a filtering scheme based on a classifier that learns the confidence of the user in labeling, thus minimizing the queries where the user would not be able to provide a class for the pixel. The capacity of a model to learn the user's confidence is studied in detail, also showing the effect of resolution is such a …
Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – A review
Abstract: Forthcoming superspectral satellite missions dedicated to land monitoring, as well as planned imaging spectrometers, will unleash an unprecedented data stream. The processing requirements for such large data streams involve processing techniques enabling the spatio-temporally explicit quantification of vegetation properties. Typically retrieval must be accurate, robust and fast. Hence, there is a strict requirement to identify next-generation bio-geophysical variable retrieval algorithms which can be molded into an operational processing chain. This paper offers a review of state-of-the-art retrieval methods for quantitative terrestrial bio-geophysical variable extraction using op…
A unified vegetation index for quantifying the terrestrial biosphere
[EN] Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf area index, gross prim…
Sparse Deconvolution Using Support Vector Machines
Sparse deconvolution is a classical subject in digital signal processing, having many practical applications. Support vector machine (SVM) algorithms show a series of characteristics, such as sparse solutions and implicit regularization, which make them attractive for solving sparse deconvolution problems. Here, a sparse deconvolution algorithm based on the SVM framework for signal processing is presented and analyzed, including comparative evaluations of its performance from the points of view of estimation and detection capabilities, and of robustness with respect to non-Gaussian additive noise. Publicado
A survey of active learning algorithms for supervised remote sensing image classification
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active …
Warped Gaussian Processes in Remote Sensing Parameter Estimation and Causal Inference
This letter introduces warped Gaussian process (WGP) regression in remote sensing applications. WGP models output observations as a parametric nonlinear transformation of a GP. The parameters of such a prior model are then learned via standard maximum likelihood. We show the good performance of the proposed model for the estimation of oceanic chlorophyll content from multispectral data, vegetation parameters (chlorophyll, leaf area index, and fractional vegetation cover) from hyperspectral data, and in the detection of the causal direction in a collection of 28 bivariate geoscience and remote sensing causal problems. The model consistently performs better than the standard GP and the more a…
Semi-Supervised Support Vector Biophysical Parameter Estimation
Two kernel-based methods for semi-supervised regression are presented. The methods rely on building a graph or hypergraph Laplacian with both the labeled and unlabeled data, which is further used to deform the training kernel matrix. The deformed kernel is then used for support vector regression (SVR). The semi-supervised SVR methods are sucessfully tested in LAI estimation and ocean chlorophyll concentration prediction from remotely sensed images.
Multitemporal Cloud Masking in the Google Earth Engine
The exploitation of Earth observation satellite images acquired by optical instruments requires an automatic and accurate cloud detection. Multitemporal approaches to cloud detection are usually more powerful than their single scene counterparts since the presence of clouds varies greatly from one acquisition to another whereas surface can be assumed stationary in a broad sense. However, two practical limitations usually hamper their operational use: the access to the complete satellite image archive and the required computational power. This work presents a cloud detection and removal methodology implemented in the Google Earth Engine (GEE) cloud computing platform in order to meet these r…