0000000000374990
AUTHOR
Markus Hannula
How and why does willow biochar increase a clay soil water retention capacity?
Addition of biochar into a soil changes its water retention properties by modifying soil textural and structural properties. In addition, internal micrometer-scale porosity that is able to directly store readily plant available water affects soil water retention properties. This study shows how precise knowledge of the internal micrometer-scale pore size distribution of biochar can deepen the understanding of the biochar-water interactions in soils. The micrometer-scale porosity of willow biochar was quantitatively and qualitatively characterized using X-ray tomography, 3D image analysis and Helium ion microscopy. The effect of biochar application on clay soil water retention was studied by…
Effects of pyrolysis temperature on the hydrologically relevant porosity of willow biochar
Biochar pore space consists of porosity of multiple length scales. In direct water holding applications like water storage for plant water uptake, the main interest is in micrometre-range porosity since these pores are able to store water that is easily available for plants. Gas adsorption measurements which are commonly used to characterize the physical pore structure of biochars are not able to quantify this pore-size range. While pyrogenetic porosity (i.e. pores formed during pyrolysis process) tends to increase with elevated process temperature, it is uncertain whether this change affects the pore space capable to store plant available water. In this study, we characterized biochar poro…