0000000000379696

AUTHOR

Vladimir Kadets

0000-0002-5606-2679

showing 2 related works from this author

Description of the limit set of Henstock–Kurzweil integral sums of vector-valued functions

2015

Abstract Let f be a function defined on [ 0 , 1 ] and taking values in a Banach space X . We show that the limit set I HK ( f ) of Henstock–Kurzweil integral sums is non-empty and convex when the function f has an integrable majorant and X is separable. In the same setting we give a complete description of the limit set.

Discrete mathematicsHenstock–Kurzweil integralApplied MathematicsMathematics::Classical Analysis and ODEsBanach spaceRiemann integralFunction (mathematics)Separable spacesymbols.namesakeSettore MAT/05 - Analisi MatematicaImproper integralsymbolsHenstock–Kurzweil integral Limit set of integral sums Multifunction Aumann integralLimit setVector-valued functionAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Measurable selectors and set-valued Pettis integral in non-separable Banach spaces

2009

AbstractKuratowski and Ryll-Nardzewski's theorem about the existence of measurable selectors for multi-functions is one of the keystones for the study of set-valued integration; one of the drawbacks of this result is that separability is always required for the range space. In this paper we study Pettis integrability for multi-functions and we obtain a Kuratowski and Ryll-Nardzewski's type selection theorem without the requirement of separability for the range space. Being more precise, we show that any Pettis integrable multi-function F:Ω→cwk(X) defined in a complete finite measure space (Ω,Σ,μ) with values in the family cwk(X) of all non-empty convex weakly compact subsets of a general (n…

Pettis integralDiscrete mathematicsPure mathematicsUniform integrabilityIntegrable systemMulti-functionClosure (topology)Banach spaceSpace (mathematics)Measure (mathematics)Multi-measureSeparable spacePettis integralMeasurable selectorAnalysisMathematicsJournal of Functional Analysis
researchProduct