Description of the limit set of Henstock–Kurzweil integral sums of vector-valued functions
Abstract Let f be a function defined on [ 0 , 1 ] and taking values in a Banach space X . We show that the limit set I HK ( f ) of Henstock–Kurzweil integral sums is non-empty and convex when the function f has an integrable majorant and X is separable. In the same setting we give a complete description of the limit set.
Measurable selectors and set-valued Pettis integral in non-separable Banach spaces
AbstractKuratowski and Ryll-Nardzewski's theorem about the existence of measurable selectors for multi-functions is one of the keystones for the study of set-valued integration; one of the drawbacks of this result is that separability is always required for the range space. In this paper we study Pettis integrability for multi-functions and we obtain a Kuratowski and Ryll-Nardzewski's type selection theorem without the requirement of separability for the range space. Being more precise, we show that any Pettis integrable multi-function F:Ω→cwk(X) defined in a complete finite measure space (Ω,Σ,μ) with values in the family cwk(X) of all non-empty convex weakly compact subsets of a general (n…