6533b7dbfe1ef96bd1270b92
RESEARCH PRODUCT
Description of the limit set of Henstock–Kurzweil integral sums of vector-valued functions
Diana CaponettiL. Di PiazzaVladimir Kadetssubject
Discrete mathematicsHenstock–Kurzweil integralApplied MathematicsMathematics::Classical Analysis and ODEsBanach spaceRiemann integralFunction (mathematics)Separable spacesymbols.namesakeSettore MAT/05 - Analisi MatematicaImproper integralsymbolsHenstock–Kurzweil integral Limit set of integral sums Multifunction Aumann integralLimit setVector-valued functionAnalysisMathematicsdescription
Abstract Let f be a function defined on [ 0 , 1 ] and taking values in a Banach space X . We show that the limit set I HK ( f ) of Henstock–Kurzweil integral sums is non-empty and convex when the function f has an integrable majorant and X is separable. In the same setting we give a complete description of the limit set.
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-01 | Journal of Mathematical Analysis and Applications |