0000000000380591
AUTHOR
Suvi Suurnäkki
Effect of peracetic acid on levels of geosmin, 2-methylisoborneol, and their potential producers in a recirculating aquaculture system for rearing rainbow trout (Oncorhynchus mykiss)
In recirculating aquaculture systems (RAS)s, off-flavors and odors, mainly caused by geosmin (GSM) and 2-methylisoborneol (MIB), can accumulate in the flesh of fish from RAS water, reducing the profitability of production. In this study, peracetic acid (PAA) was applied in three application intervals to pump sumps of rainbow trout (Oncorhynchus mykiss) reared in RAS. Using a real-time polymerase chain reaction (qPCR), the potential off-flavor producers were quantified using geoA and MIB synthase genes. Streptomyces was identified as the major GSM producer, and biofilters showed the highest number of potential off-flavor producers. Concentrations of GSM and MIB were analyzed in the circulati…
Salinity affects nitrate removal and microbial composition of denitrifying woodchip bioreactors treating recirculating aquaculture system effluents
This study investigated the effect of salinity on microbial composition and denitrification capacity of woodchip bioreactors treating recirculating aquaculture system (RAS) effluents. Twelve laboratory-scale woodchip bioreactors were run in triplicates at 0, 15, 25, and 35 ppt salinities, and water chemistry was monitored every third day during the first 39 days of operation. Microbial communities of the woodchips bioreactors were analyzed at the start, after one week, and at the end of the trial. Woodchip bioreactors removed nitrate at all salinities tested. The highest NO3-N removal rate of 22.0 ± 6.9 g NO3-N/m3/d was obtained at 0 ppt, while 15.3 ± 4.9, 12.5 ± 5.4 and 11.8 ± 4.0 g NO3-N/…
Cyanobacteria and their metabolites in mono- and polidominant shallow eutrophic temperate lakes
Monodominant (one species dominates) or polidominant (multiple species dominate) cyanobacterial blooms are pronounced in productive freshwater ecosystems and pose a potential threat to the biota due to the synthesis of toxins. Seasonal changes in cyanobacteria species and cyanometabolites composition were studied in two shallow temperate eutrophic lakes. Data on cyanobacteria biomass and diversity of dominant species in the lakes were combined with chemical and molecular analyses of fifteen potentially toxin-producing cyanobacteria species (248 isolates from the lakes). Anatoxin-a, saxitoxin, microcystins and other non-ribosomal peptides formed the diverse profiles in monodominant (Planktot…
Microbial communities in full-scale woodchip bioreactors treating aquaculture effluents.
Woodchip bioreactors are being successfully applied to remove nitrate from commercial land-based recirculating aquaculture system (RAS) effluents. In order to understand and optimize the overall function of these bioreactors, knowledge on the microbial communities, especially on the microbes with potential for production or mitigation of harmful substances (e.g. hydrogen sulfide; H2S) is needed. In this study, we quantified and characterized bacterial and fungal communities, including potential H2S producers and consumers, using qPCR and high throughput sequencing of 16S rRNA gene. We took water samples from bioreactors and their inlet and outlet, and sampled biofilms growing on woodchips a…
Increased sulfate availability in saline water promotes hydrogen sulfide production in fish organic waste
The risk of hydrogen sulfide (H2S) production can be a challenge in marine land-based recirculating aquaculture systems (RAS). Hydrogen sulfide is a toxic gas that can cause massive fish mortality even at low concentrations, and in addition, serious odour problems in the surroundings. It is a bacterial by-product originating from the degradation of organic matter in sulfur-rich waters such as marine waters. In order to hinder H2S production in marine land-based RAS, more information on the H2S production conditions and the associated microbiology is needed. In this study, the production of H2S from rainbow trout (Oncorhynchus mykiss) organic waste was examined using a novel H2S measurement …
The Biosynthesis of Rare Homo-Amino Acid Containing Variants of Microcystin by a Benthic Cyanobacterium
Microcystins are a family of chemically diverse hepatotoxins produced by distantly related cyanobacteria and are potent inhibitors of eukaryotic protein phosphatases 1 and 2A. Here we provide evidence for the biosynthesis of rare variants of microcystin that contain a selection of homo-amino acids by the benthic cyanobacterium Phormidium sp. LP904c. This strain produces at least 16 microcystin chemical variants many of which contain homophenylalanine or homotyrosine. We retrieved the complete 54.2 kb microcystin (mcy) gene cluster from a draft genome assembly. Analysis of the substrate specificity of McyB1 and McyC adenylation domain binding pockets revealed divergent substrate specificity …
The effect of peracetic acid on microbial community, water quality, nitrification and rainbow trout (Oncorhynchus mykiss) performance in recirculating aquaculture systems
Abstract Microbial biofilters control water quality and enable the overall function of recirculation aquaculture systems (RAS). Changes in environmental conditions can affect the abundance and interactions of the diverse microbial populations of the biofilter, affecting nitrification of harmful ammonium and thus fish health. Here, we examined the effect of different application frequencies (0, 1, 2 and 4 times per week) of a common disinfectant, peracetic acid (PAA, applied 1.1 mg l−1 twice per day), on biofilter microbial communities, focusing especially on nitrifying microbial groups and using a high throughput sequencing of 16S rRNA gene and quantitative PCR (qPCR). In addition, we measu…
Enhanced nitrogen removal of low carbon wastewater in denitrification bioreactors by utilizing industrial waste toward circular economy
Aquaculture needs practical solutions for nutrient removal to achieve sustainable fish production. Passive denitrifying bioreactors may provide an ecological, low-cost and low-maintenance approach for wastewater nitrogen removal. However, innovative organic materials are needed to enhance nitrate removal from the low carbon effluents in intensive recirculating aquaculture systems (RAS). In this study, we tested three additional carbon sources, including biochar, dried Sphagnum sp. moss and industrial potato residues, to enhance the performance of woodchip bioreactors treating the low carbon RAS wastewater. We assessed nitrate (NO3−) removal and microbial community composition during a one-y…
Effect of peracetic acid on levels of geosmin, 2-methylisoborneol, and their potential producers in a recirculating aquaculture system for rearing rainbow trout (Oncorhynchus mykiss)
Abstract In recirculating aquaculture systems (RAS)s, off-flavors and odors, mainly caused by geosmin (GSM) and 2-methylisoborneol (MIB), can accumulate in the flesh of fish from RAS water, reducing the profitability of production. In this study, peracetic acid (PAA) was applied in three application intervals to pump sumps of rainbow trout (Oncorhynchus mykiss) reared in RAS. Using a real-time polymerase chain reaction (qPCR), the potential off-flavor producers were quantified using geoA and MIB synthase genes. Streptomyces was identified as the major GSM producer, and biofilters showed the highest number of potential off-flavor producers. Concentrations of GSM and MIB were analyzed in the …
Salinity affects nitrate removal and microbial composition of denitrifying woodchip bioreactors treating recirculating aquaculture system effluents
Abstract This study investigated the effect of salinity on microbial composition and denitrification capacity of woodchip bioreactors treating recirculating aquaculture system (RAS) effluents. Twelve laboratory-scale woodchip bioreactors were run in triplicates at 0, 15, 25, and 35 ppt salinities, and water chemistry was monitored every third day during the first 39 days of operation. Microbial communities of the woodchips bioreactors were analyzed at the start, after one week, and at the end of the trial. Woodchip bioreactors removed nitrate at all salinities tested. The highest NO3-N removal rate of 22.0 ± 6.9 g NO3-N/m3/d was obtained at 0 ppt, while 15.3 ± 4.9, 12.5 ± 5.4 and 11.8 ± 4.0…
Enhanced nitrogen removal of low carbon wastewater in denitrification bioreactors by utilizing industrial waste toward circular economy
Abstract Aquaculture needs practical solutions for nutrient removal to achieve sustainable fish production. Passive denitrifying bioreactors may provide an ecological, low-cost and low-maintenance approach for wastewater nitrogen removal. However, innovative organic materials are needed to enhance nitrate removal from the low carbon effluents in intensive recirculating aquaculture systems (RAS). In this study, we tested three additional carbon sources, including biochar, dried Sphagnum sp. moss and industrial potato residues, to enhance the performance of woodchip bioreactors treating the low carbon RAS wastewater. We assessed nitrate (NO3−) removal and microbial community composition durin…
Nitrate removal microbiology in woodchip bioreactors : a case-study with full-scale bioreactors treating aquaculture effluents
Woodchip bioreactors are viable low-cost nitrate (NO3−) removal applications for treating agricultural and aquaculture discharges. The active microbial biofilms growing on woodchips are conducting nitrogen (N) removal, reducing NO3− while oxidizing the carbon (C) from woodchips. However, bioreactor age, and changes in the operating conditions or in the microbial community might affect the NO3− removal as well as potentially promote nitrous oxide (N2O) production through either incomplete denitrification or dissimilatory NO3− reduction to ammonium (DNRA). Here, we combined stable isotope approach, amplicon sequencing, and captured metagenomics for studying the potential NO3− removal rates, a…
Increased sulfate availability in saline water promotes hydrogen sulfide production in fish organic waste
The risk of hydrogen sulfide (H2S) production can be a challenge in marine land-based recirculating aquaculture systems (RAS). Hydrogen sulfide is a toxic gas that can cause massive fish mortality even at low concentrations, and in addition, serious odour problems in the surroundings. It is a bacterial by-product originating from the degradation of organic matter in sulfur-rich waters such as marine waters. In order to hinder H2S production in marine land-based RAS, more information on the H2S production conditions and the associated microbiology is needed. In this study, the production of H2S from rainbow trout (Oncorhynchus mykiss) organic waste was examined using a novel H2S measurement …
The effect of peracetic acid on microbial community, water quality, nitrification and rainbow trout (Oncorhynchus mykiss) performance in recirculating aquaculture systems
Microbial biofilters control water quality and enable the overall function of recirculation aquaculture systems (RAS). Changes in environmental conditions can affect the abundance and interactions of the diverse microbial populations of the biofilter, affecting nitrification of harmful ammonium and thus fish health. Here, we examined the effect of different application frequencies (0, 1, 2 and 4 times per week) of a common disinfectant, peracetic acid (PAA, applied 1.1 mg l−1 twice per day), on biofilter microbial communities, focusing especially on nitrifying microbial groups and using a high throughput sequencing of 16S rRNA gene and quantitative PCR (qPCR). In addition, we measured biofi…