0000000000381538
AUTHOR
Walter Rapp
Biomechanics of simulated versus natural cross-country sit skiing
The purpose of this study was to investigate the biomechanics of cross-country sit-skiing in simulated and natural skiing. Thirteen international level athletes participated in a ski ergometer test (simulated conditions) and a test on snow in a ski-tunnel (natural conditions) using their personal sit-ski. Tests in both conditions were performed at individual maximal speed. When comparing the two conditions the main results were: (1) maximal speed in simulated conditions was lower (p < 0.05) but correlated well with the natural condition (r = 0.79, p < 0.001); (2) no differences in pole force variables were found; peak force (r = 0.77, p < 0.01) and average force (r = 0.78, p < 0.01) correla…
Force Generation Profiles of Para-Nordic Sit-Skiers Representing Different Physical Impairments
Abstract Purpose To biomechanically profile force generation connected to the complex role of the trunk in double poling in a representative sample of Para-Nordic sit-skiers. Methods Twelve male World Cup Para-Nordic sit-skiers (sport classes: LW10–12) were skiing on flat snow terrain at submaximal speed of 4.5 m/s (~ 73% maximum speed). 2D video (50 Hz) and pole force analyses (1000 Hz) were performed synchronously, examining angle, force and cycle characteristics to analyse the role of the trunk in generating propulsion. Results LW10–11.5 skiers lost between 21% and 4% propulsive force versus LW12 athletes only due to different geometrics of the trunk and pole angle at an equal axial pole…
Arm swing during skating at different skiing speeds affects skiing mechanics and performance
Arm swing has been shown to lead to greater maximal speed and movement economy in cross -country skiing. The current study aimed to investigate how arm swing alters skiing mechanics and contributes to performance and acceleration of the athlete’s centre of mass (COM). While skiing on snow seven highly skilled cross -country skiers simulated V2 -alternate skating without using ski poles and with double or single arm swing and without arm swing . During leg push -off the linear momentum of the body increased due to arm swing. Simultaneously, linear momentum of the arm(s) decreased in arm swing trials, indicating a transfer of momentum from arms to the rest of the body and being more prevalent…
The effect of swinging the arms on muscle activation and production of leg force during ski skating at different skiing speeds
The study investigated the effects of arm swing during leg push-off in V2-alternate/G4 skating on neuromuscular activation and force production by the leg muscles. Nine skilled cross-country skiers performed V2-alternate skating without poles at moderate, high, and maximal speeds, both with free (SWING) and restricted arm swing (NOSWING). Maximal speed was 5% greater in SWING (P<0.01), while neuromuscular activation and produced forces did not differ between techniques. At both moderate and high speed the maximal (2% and 5%, respectively) and average (both 5%) vertical force and associated impulse (10% and 14%) were greater with SWING (all P<0.05). At high speed range of motion and angular …
Arm swing during skating at different skiing speeds affects skiing mechanics and performance
A new testing device for the role of the trunk in force production and in balance control in disabled sitting athletes
In cross-country sit-skiing all athletes compete in a sitting position, but some of them have the ability to control their trunk more than others. The trunk plays an essential role in two performance determinants: propulsion generation and balance maintenance. The aim of the study is to design a new testing device assessing athletes’ responses to these propulsion determinants. The new device was composed of a seat surrounded by a sensorized aluminum frame. To assess propulsion generation, two force sensors were mounted in the anterior and posterior side of the frame, while two force sensors were embedded in two ropes elongated from the top of the frame. To measure trunk control, the device …
Forward acceleration of the centre of mass during ski skating calculated from force and motion capture data
The purpose of this paper was to present and evaluate a methodology to determine the contribution of bilateral leg and pole thrusts to forward acceleration of the centre of mass (COM) of cross-country skiers from multi-dimensional ground reaction forces and motion capture data. Nine highly skilled cross-country (XC) skiers performed leg skating and V2-alternate skating (V2A) under constant environmental conditions on snow, while ground reaction forces measured from ski bindings and poles and 3D motion with high-speed cameras were captured. COM acceleration determined from 3D motion analyses served as a reference and was compared to the results of the proposed methodology. The obtained value…
Effect of Sitting Posture on Sit-Skiing Economy in Non-disabled Athletes
This study focused on resolving the differences in economy between two common sit-skiing postures used by disabled athletes, suspected to be the most and least effective. Ten experienced non-disabled male cross-country skiers went through an incremental testing protocol with an ergometer simulating double poling in two sitting postures “kneeing” and “knee-high.” The protocol consisted of 3 × 4 min steady-state stages (13, 22, and 34% of maximal sprint power output). Subjects' respiratory gases and heart rate were measured and blood lactate concentrations were determined. In addition, pulling forces and motion capture recordings were collected. Oxygen consumption was 15.5% (p < 0.01) higher …
Contribution of sport science to performance: Nordic skiing
Balance Perturbations as a Measurement Tool for Trunk Impairment in Cross-Country Sit Skiing
In cross-country sit-skiing, the trunk plays a crucial role in propulsion generation and balance maintenance. Trunk stability is evaluated by automatic responses to unpredictable perturbations; however, electromyography is challenging. The aim of this study was to identify a measure to group sit-skiers according to their ability to control the trunk. Seated in their competitive sit-ski, 10 male and 5 female Paralympic sit-skiers received 6 forward and 6 backward unpredictable perturbations in random order. k-means clustered trunk position at rest, delay to invert the trunk motion, and trunk range of motion significantly into 2 groups. In conclusion, unpredictable perturbations might quantif…
Evaluating objective measures of impairment to trunk strength and control for cross-country sit skiing
AbstractIn Paralympic cross-country sit skiing, athlete classification is performed by an expert panel, so it may be affected by subjectivity. An evidence-based classification is required, in which objective measures of impairment must be identified. The purposes of this study were: (i) to evaluate the reliability of 5 trunk strength measures and 18 trunk control measures developed for the purposes of classification; (ii) to rank the objective measures, according to the largest effects on performance. Using a new testing device, 14 elite sit-skiers performed two upright seated press tests and one simulated poling test to evaluate trunk strength. They were also subjected to unpredictable bal…
Changes in biomechanics of skiing at maximal velocity caused by simulated 20 km skiing race using V2 skating technique
This study investigated how the fatigue caused by a 20 km simulated skating cross-country skiing race on snow affects the final spurt performance from a biomechanical perspective. Subjects performed a 100 meter maximal skiing trial before and at the end of the simulated race. Cycle characteristics, ground reaction forces from skis and poles, and muscle activity from eight muscles were recorded during each trial. Results showed that subjects were in a fatigued state after the simulated race manifested by 11.6% lower skiing speed (P < 0.01). The lower skiing speed was related to an 8.0% decrease in cycle rate (P < 0.01) whereas cycle length was slightly decreased (tendency). In temporal patte…
Changes in biomechanics of skiing at maximal velocity caused by simulated 20 km skiing race using V2 skating technique
This study investigated how the fatigue caused by a 20-km simulated skating cross-country skiing race on snow affects the final spurt performance from a biomechanical perspective. Subjects performed a 100-m maximal skiing trial before and at the end of the simulated race. Cycle characteristics, ground reaction forces from skis and poles, and muscle activity from eight muscles were recorded during each trial. Results showed that subjects were in a fatigued state after the simulated race manifested by 11.6% lower skiing speed (P<.01). The lower skiing speed was related to an 8.0% decrease in cycle rate (P<.01), whereas cycle length was slightly decreased (tendency). In temporal patterns, rela…
Simulated skiing as a measurement tool for performance in cross-country sit-skiing
The International Paralympic Committee mandates the development of an evidence-based classification system, which requires a measure of performance. Performance in cross-country sit-skiing is mainly dependent on force generated during the poling phase and is enhanced by trunk flexion–extension movements. Since all sit-skiers have neuromuscular impairment, but different ability to control the trunk, this study aimed to verify if simulated action of poling on an adapted ergometer, together with a cluster analysis, could be used for grouping participants with different impairments according to their performance. On the ergometer, eight male and five female participants performed seven poling c…