0000000000383432
AUTHOR
Zahra Sotoodeh-nia
Performance of a sustainable asphalt mix incorporating high RAP content and novel bio-derived binder
The recent drive to find ways to increase sustainability and decrease costs in asphalt paving has led researchers to find innovative ways to incorporate more recycled materials and bio-derived binders into mixes with varying success. A new novel bio-derived binder made from refined pine chemistry stabilised with a polymer can increase the sustainability of asphalt mixes while maintaining pavement performance. Laboratory performance testing was conducted on asphalt mixes containing 50% Reclaimed Asphalt Pavement (RAP) by mix weight and the novel bio-derived binder. Results show that the bio-derived binder outperforms the conventional 50/70 pen grade binder mixes with respect to resistance to…
Full-scale validation of bio-recycled asphalt mixtures for road pavements
Abstract Recycling of asphalt has become a well-established practice in many countries, however the road pavement industry remains a bulk consumer of extracted raw materials. Novel solutions that find root in circular economy concepts and life-cycle approaches are needed in order to enable optimisation of infrastructure resource efficiency, starting from the design stage and spanning the whole value chain in the construction sector. Itis within this framework that the present study presents a full-scale validation of asphalt mixtures specifically designed to ensure durability of flexible road pavements and at the same time enabling the reuse of reclaimed asphalt pavement (RAP) through the i…
From Laboratory Mixes Evaluation to Full Scale Test: Fatigue Behavior of Bio-Materials Recycled Asphalt Mixtures
The present paper describes the full-scale accelerated test, carried out on asphalt pavements made up with bio-materials, especially designed to help reusing Reclaimed Asphalt (RA) by re-activating the aged binder. Four pavement sections were evaluated: three pavement sections with innovative bio-materials (bio-recycled asphalt mixtures), and a reference section with a conventional, high modulus asphalt mix (EME2). In this study, fatigue resistance was first evaluated in laboratory, with two-points bending test, and then at full scale under heavy traffic loading, with the IFSTTAR accelerated pavement testing facility. The evolution of bio-materials recycled asphalt mixture characteristics, …
From Laboratory Mixes to Full Scale Test: Rutting Evaluation of Bio-recycled Asphalt Mixes
The present paper describes the rutting behavior of innovative mixes incorporating 50% of Reclaimed Asphalt (RA) with bio-materials. They were assessed in the laboratory and in a full-scale accelerated experiment. The innovative mixes studied here contained bio-materials especially designed to help recycling by re-activating the aged binder from RA. Four mixes were evaluated: three of them are manufactured with bio-materials, (two bio-rejuvenators and one bio-binder) and one was a control mix, which was a high modulus asphalt mix (EME2). In this study, the rutting resistance of the four mixes was first evaluated in the laboratory with both European and US methods. The full-scale test was th…
Effect of two novel bio-based rejuvenators on the performance of 50% RAP mixes - a statistical study on the complex modulus of asphalt binders and asphalt mixtures
An experimental study was conducted to evaluate the effectiveness of two bio-additives as rejuvenators on the properties of asphalt mixtures containing 50% RAP and their binder constituents containing 37% RAP binder. Before mixing, the rejuvenators were blended with fresh bitumen and the extracted and recovered RAP bitumen, and changes in the rheological properties of the binders were assessed using performance grading (PG) criteria. The results showed that both rejuvenators could improve the low-temperature performance of the aged RAP binder and restore its low-temperature properties. Master curves for the unaged, RTFO-aged, and PAV aged blends were constructed using both the Christensen-A…