0000000000383572

AUTHOR

Zhi-yu Sun

showing 5 related works from this author

Search for gamma-ray spectral lines with the DArk Matter Particle Explorer

2021

The DArk Matter Particle Explorer (DAMPE) is well suitable for searching for monochromatic and sharp $\gamma$-ray structures in the GeV$-$TeV range thanks to its unprecedented high energy resolution. In this work, we search for $\gamma$-ray line structures using five years of DAMPE data. To improve the sensitivity, we develop two types of dedicated data sets (including the BgoOnly data which is the first time to be used in the data analysis for the calorimeter-based gamma-ray observatories) and adopt the signal-to-noise ratio optimized regions of interest (ROIs) for different DM density profiles. No line signals or candidates are found between 10 and 300 GeV in the Galaxy. The constraints o…

High Energy Astrophysical Phenomena (astro-ph.HE)Line-like structureHigh Energy Physics - Experiment (hep-ex)MultidisciplinaryAstrophysics::High Energy Astrophysical PhenomenaDAMPE Dark matter Gamma-ray Line-like structureSettore FIS/01 - Fisica SperimentaleDAMPEDark matterFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaGamma-rayHigh Energy Physics - ExperimentScience Bulletin
researchProduct

Energy and range focusing of in-flight separated exotic nuclei – A study for the energy-buncher stage of the low-energy branch of the Super-FRS

2003

Abstract The relative momentum spread of in-flight separated exotic nuclear beams produced in fragmentation and/or fission reactions is of the order of a few percent. A new technique is presented, which reduces the momentum spread significantly, and first experimental results obtained with relativistic projectile fragments are shown. This technique is the key to experiments with slowed-down and stopped beams, in particular for the efficient stopping of relativistic exotic nuclei in gas-filled stopping cells. It will be employed at the energy-buncher stage of the low-energy branch of the Super-FRS facility. The ion-optical design of the energy buncher is presented and a brief outlook to the …

Nuclear physicsPhysicsNuclear and High Energy PhysicsLow energyFissionProjectileNuclear TheoryPhysics::Accelerator PhysicsNuclear ExperimentInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons

2017

High energy cosmic ray electrons plus positrons (CREs), which lose energy quickly during their propagation, provide an ideal probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been directly measured up to $\sim 2$ TeV in previous balloon- or space-borne experiments, and indirectly up to $\sim 5$ TeV by ground-based Cherenkov $\gamma$-ray telescope arrays. Evidence for a spectral break in the TeV energy range has been provided by indirect measurements of H.E.S.S., although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the …

Astrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayElectron01 natural sciencesdark matterHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Positroncosmic rays0103 physical sciences010303 astronomy & astrophysicsCherenkov radiationHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicscosmic rays dark matter electrons space experimentsMultidisciplinaryAnnihilation010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleSpectrum (functional analysis)electronsGalaxyHigh Energy Physics - PhenomenologyHigh Energy Physics::Experimentspace experimentsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite

2019

DAMPE satellite has directly measured the cosmic ray proton spectrum from 40 GeV to 100 TeV and revealed a new feature at about 13.6 TeV.

dark matter cosmic rays spaceProtonMilky WayAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsKinetic energy01 natural sciences0103 physical sciences010306 general physicsNuclear ExperimentResearch ArticlesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral indexMultidisciplinary010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologySettore FIS/01 - Fisica SperimentaleSciAdv r-articlesPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaResearch Article
researchProduct

The DArk Matter Particle Explorer mission

2017

The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to $\sim 10$ TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calib…

Physics - Instrumentation and DetectorsSatellite launchesGamma ray observatoriesAstrophysicsGalactic cosmic rays01 natural sciencesCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ObservatoryDetectors and Experimental TechniquesCosmic rays dark matter space experiments010303 astronomy & astrophysicsphysics.ins-detSpace science missionsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)CosmologyCosmology Galaxies Gamma rays Tellurium compounds Chinese Academy of Sciences Dark matter particles Explorer missions Galactic cosmic rays Gamma ray observatories Satellite launches Scientific objectives Space science missions Cosmic raysSpace ScienceAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaParticle Physics - ExperimentAstrophysics and AstronomyAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic raydark matterTellurium compounds0103 physical sciencesCosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)010308 nuclear & particles physicshep-exGamma raysAstronomyAstronomy and AstrophysicsGalaxiesChinese academy of sciencesGalaxyScientific objectivesDark matter particlesChinese Academy of SciencesSatellitespace experimentsExplorer missionsastro-ph.IM
researchProduct