0000000000384543
AUTHOR
Rita Fioresi
The quantum chiral Minkowski and conformal superspaces
We give a quantum deformation of the chiral super Minkowski space in four dimensions as the big cell inside a quantum super Grassmannian. The quantization is performed in such way that the actions of the Poincar\'e and conformal quantum supergroups on the quantum Minkowski and quantum conformal superspaces are presented.
On Chiral Quantum Superspaces
We give a quantum deformation of the chiral Minkowski superspace in 4 dimensions embedded as the big cell into the chiral conformal superspace. Both deformations are realized as quantum homogeneous superspaces: we deform the ring of regular functions together with a coaction of the corresponding quantum supergroup.
Quadratic deformation of Minkowski space
We present a deformation of the Minkowski space as embedded into the conformal space (in the formalism of twistors) based in the quantum versions of the corresponding kinematic groups. We compute explicitly the star product, whose Poisson bracket is quadratic. We show that the star product although defined on the polynomials can be extended differentiably. Finally we compute the Eucliden and Minkowskian real forms of the deformation.
On the deformation quantization of coadjoint orbits of semisimple groups
In this paper we consider the problem of deformation quantization of the algebra of polynomial functions on coadjoint orbits of semisimple lie groups. The deformation of an orbit is realized by taking the quotient of the universal enveloping algebra of the Lie algebra of the given Lie group, by a suitable ideal. A comparison with geometric quantization in the case of SU(2) is done where both methods agree.
The Segre embedding of the quantum conformal superspace
In this paper study the quantum deformation of the superflag Fl(2|0, 2|1,4|1), and its big cell, describing the complex conformal and Minkowski superspaces respectively. In particular, we realize their projective embedding via a generalization to the super world of the Segre map and we use it to construct a quantum deformation of the super line bundle realizing this embedding. This strategy allows us to obtain a description of the quantum coordinate superring of the superflag that is then naturally equipped with a coaction of the quantum complex conformal supergroup SL_q(4|1).
Algebraic and Differential Star Products on Regular Orbits of Compact Lie Groups
In this paper we study a family of algebraic deformations of regular coadjoint orbits of compact semisimple Lie groups with the Kirillov Poisson bracket. The deformations are restrictions of deformations on the dual of the Lie algebra. We prove that there are non isomorphic deformations in the family. The star products are not differential, unlike the star products considered in other approaches. We make a comparison with the differential star product canonically defined by Kontsevich's map.
The Minkowski and conformal superspaces
We define complex Minkowski superspace in 4 dimensions as the big cell inside a complex flag supermanifold. The complex conformal supergroup acts naturally on this super flag, allowing us to interpret it as the conformal compactification of complex Minkowski superspace. We then consider real Minkowski superspace as a suitable real form of the complex version. Our methods are group theoretic, based on the real conformal supergroup and its Lie superalgebra.
ON THE DEFORMATION QUANTIZATION OF AFFINE ALGEBRAIC VARIETIES
We compute an explicit algebraic deformation quantization for an affine Poisson variety described by an ideal in a polynomial ring, and inheriting its Poisson structure from the ambient space.
On algebraic supergroups, coadjoint orbits and their deformations
In this paper we study algebraic supergroups and their coadjoint orbits as affine algebraic supervarieties. We find an algebraic deformation quantization of them that can be related to the fuzzy spaces of non-commutative geometry.