0000000000385144

AUTHOR

Carina Orth

The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature

The survival and functioning of a bone biomaterial upon implantation requires a rapidly forming and stably functioning vascularization that connects the implant to the recipient. We have previously shown that human microcapillary endothelial cells (HDMEC) and primary human osteoblast cells (HOS) in coculture on various 3-D bone biomaterial scaffolds rapidly distribute and self-assemble into a morphological structure resembling bone tissue. Endothelial cells form microcapillary-like structures containing a lumen and these were intertwined between the osteoblast cells and the biomaterial. This tissue-like self-assembly occurred in the absence of exogenously added angiogenic stimuli or artific…

research product

Dynamic In Vivo Biocompatibility of Angiogenic Peptide Amphiphile Nanofibers

Biomaterials that promote angiogenesis have great potential in regenerative medicine for rapid revascularization of damaged tissue, survival of transplanted cells, and healing of chronic wounds. Supramolecular nanofibers formed by self-assembly of a heparin-binding peptide amphiphile and heparan sulfate-like glycosaminoglycans were evaluated here using a dorsal skinfold chamber model to dynamically monitor the interaction between the nanofiber gel and the microcirculation, representing a novel application of this model. We paired this model with a conventional subcutaneous implantation model for static histological assessment of the interactions between the gel and host tissue. In the stati…

research product

Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells

For successful bone regeneration tissue engineered bone constructs combining both aspects, namely a high osteogenic potential and a rapid connection to the vascular network are needed. In this study we assessed the formation of pre-vascular structures by human outgrowth endothelial cells (OEC) from progenitors in the peripheral blood and the osteogenic differentiation of primary human osteoblasts (pOB) on micrometric silk fibroin scaffolds. The rational was to gain more insight into the dynamic processes involved in the differentiation and functionality of both cell types depending on culture time in vitro. Vascular tube formation by OEC was assessed quantitatively at one and 4 weeks of cul…

research product

Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells.

Successful cell-based tissue engineering requires a rapid and thorough vascularization in order to ensure long-term implant survival and tissue integration. The vascularization of a scaffold is a complex process, and is modulated by the presence of transplanted cells, exogenous and endogenous signaling proteins, and the host tissue reaction, among other influencing factors. This paper presents evidence for the significance of pre-seeded osteoblasts for the in vivo vascularization of a biodegradable scaffold. Human osteoblasts, cultured on silk fibroin micronets in vitro, migrated throughout the interconnected pores of the scaffold and produced extensive bone matrix. When these constructs we…

research product

Rapid vascularization of starchâ poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts

The successful integration of in vitro-generated tissues is dependent on adequate vascularization in vivo. Human outgrowth endothelial cells (OECs) isolated from the mononuclear cell fraction of peripheral blood represent a potent population of circulating endothelial progenitors that could provide a cell source for rapid anastomosis and scaffold vascularization. Our previous work with these cells in co-culture with primary human osteoblasts has demonstrated their potential to form perfused vascular structures within a starch–poly(caprolactone) biomaterial in vivo. In the present study, we demonstrate the ability of OECs to form perfused vascular structures as early as 48 h following subcut…

research product

Fine-tuning scaffolds for tissue regeneration: effects of formic acid processing on tissue reaction to silk fibroin

Formic acid (FA) plays a key role in the preparation of silk fibroin (SF) scaffolds from cocoons of Bombyx mori and is used for fibre distribution. In this study, we used a subcutaneous implantation model in Wistar rats to examine SF scaffolds prepared by treating the degummed cocoon with FA for either 30 or 60 min. The tissue reaction and inflammatory response to SF was assessed by qualitative histology at intervals from 3 to 180 days. Additionally, dynamic biomaterial-induced vascularization and biomaterial degradation were quantified using a technique for analysing an image of the entire implanted biomaterial. Varying the FA treatment time led to different scaffold morphologies and resul…

research product

Collagen-embedded hydroxylapatite–beta-tricalcium phosphate–silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth

In the present study we assessed the biocompatibility in vitro and in vivo of a low-temperature sol-gel-manufactured SiO(2)-based bone graft substitute. Human primary osteoblasts and the osteoblastic cell line, MG63, cultured on the SiO(2) biomatrix in monoculture retained their osteoblastic morphology and cellular functionality in vitro. The effect of the biomaterial in vivo and its vascularization potential was tested subcutaneously in Wistar rats and demonstrated both rapid vascularization and good integration within the peri-implant tissue. Scaffold degradation was progressive during the first month after implantation, with tartrate-resistant acid phosphatase-positive macrophages being …

research product

Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds

In the present study we assessed the potential of human outgrowth endothelial cells (OEC), a subpopulation within endothelial progenitor cell cultures, to support the vascularization of a complex tissue engineered construct for bone. OEC cultured on starch polycaprolactone fiber meshes (SPCL) in monoculture retained their endothelial functionality and responded to angiogenic stimulation by VEGF (vascular endothelial growth factor) in fibrin gel-assays in vitro. Co-culture of OEC with human primary osteoblasts (pOB) on SPCL, induced an angiogenic activation of OEC towards microvessel-like structures achieved without additional supplementation with angiogenic growth factors. Effects of co-cul…

research product

Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats.

The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute. The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascula…

research product

Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo.

In this study the tissue reaction to five different β-tricalcium phosphate (β-TCP)-based bone substitute materials differing only in size, shape and porosity was analyzed over 60 days, at 3, 10, 15, 30 and 60 days after implantation. Using the subcutaneous implantation model in Wistar rats both the inflammatory response within the implantation bed and the resulting vascularization of the biomaterials were qualitatively and quantitatively assessed by means of standard and special histological staining methods. The data from this study showed that all investigated β-TCP bone substitutes induced the formation of multinucleated giant cells. Changes in size, shape and porosity influenced the int…

research product