0000000000385225

AUTHOR

Simone Isbert

showing 5 related works from this author

Bioinspired self-assembly of tyrosinase-modified silicatein and fluorescent core-shell silica spheres.

2014

Inspired by the intermolecular cross-linking of mussel foot proteins and their adhesive properties, tyrosinase has been used to modify recombinant silicatein. DOPA/DOPAquinone-mediated cross-linking and interfacial interactions enhanced both self-assembly of silicatein building blocks and templating of core–shell silica spheres, resulting in fluorescent biomimetic silicatein–silica hybrid mesofibers.

ChemistryMonophenol MonooxygenaseTyrosinaseBiophysicsNanotechnologySilicon DioxideBiochemistryFluorescenceCathepsinsPoriferaCore shellNanoporesBiomimetic MaterialsMaterials TestingMolecular MedicineAnimalsSelf-assemblyAdhesiveEngineering (miscellaneous)NanospheresBiotechnologyFluorescent DyesBioinspirationbiomimetics
researchProduct

Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription.

2008

A sequence of amyloid precursor protein (APP) cleavages culminates in the sequential release of the APP intracellular domain (AICD) and the amyloid beta peptide (Abeta) and/or p3 fragment. One of the environmental factors favouring the accumulation of AICD appears to be a rise in intracellular pH. Here we further identified the metabolism and subcellular localization of artificially expressed constructs under such conditions. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely cleaved from C83. While the AICD surplus was unable…

Transcriptional ActivationTranscription GeneticAmyloid betaActive Transport Cell NucleusCHO CellsModels BiologicalTransactivationAmyloid beta-Protein PrecursorCricetulusTranscription (biology)CricetinaeAmyloid precursor proteinAnimalsHumansLuciferaseCells CulturedRegulation of gene expressionCell NucleusbiologyCell BiologyHydrogen-Ion ConcentrationSubcellular localizationMolecular biologyCell biologyProtein Structure TertiaryCytosolbiology.proteinProtein Processing Post-TranslationalProtein BindingExperimental cell research
researchProduct

Poriferan survivin exhibits a conserved regulatory role in the interconnected pathways of cell cycle and apoptosis

2010

Survivin orchestrates intracellular pathways during cell division and apoptosis. Its central function as mitotic regulator and inhibitor of cell death has major implications for tumor cell proliferation. Analyses in early-branching Metazoa so far propose an exclusive role of survivin as a chromosomal passenger protein, whereas only later during evolution a complementary antiapoptotic function might have arisen, concurrent with increased organismal complexity. To lift the veil on the ancestral function(s) of this key regulator, a survivin-like protein (SURVL) of one of the earliest-branching metazoan taxa was identified and functionally characterized. SURVL of the sponge Suberites domuncula …

Programmed cell deathCell divisionRecombinant Fusion ProteinsMolecular Sequence DataApoptosisTransfectionCell LineInhibitor of Apoptosis ProteinsLipopeptidesSurvivinAnimalsHumansAmino Acid SequenceMolecular BiologyMitosisGeneticsOriginal PaperBase SequencebiologyCell CycleCell BiologyCell cyclebiology.organism_classificationCell biologySuberites domunculaCell cultureCaspasesSuberitesSequence AlignmentCell DivisionIntracellularCadmiumCell Death & Differentiation
researchProduct

Metalloprotease meprin beta generates nontoxic N-terminal amyloid precursor protein fragments in vivo.

2011

Identification of physiologically relevant substrates is still the most challenging part in protease research for understanding the biological activity of these enzymes. The zinc-dependent metalloprotease meprin β is known to be expressed in many tissues with functions in health and disease. Here, we demonstrate unique interactions between meprin β and the amyloid precursor protein (APP). Although APP is intensively studied as a ubiquitously expressed cell surface protein, which is involved in Alzheimer disease, its precise physiological role and relevance remain elusive. Based on a novel proteomics technique termed terminal amine isotopic labeling of substrates (TAILS), APP was identified …

medicine.medical_treatmentBiologyProteomicsBiochemistryPolymerase Chain ReactionCell LineSubstrate Specificity03 medical and health sciencesAmyloid beta-Protein PrecursorMice0302 clinical medicinemental disordersAmyloid precursor proteinmedicineAnimalsHumansProtein IsoformsMolecular Biology030304 developmental biologyDNA Primerschemistry.chemical_classification0303 health sciencesMetalloproteinaseProteaseBase SequenceNeurodegenerationTioproninBrainCell BiologyTerminal amine isotopic labeling of substratesmedicine.diseaseIn vitroRecombinant Proteins3. Good healthMice Inbred C57BLEnzymechemistryBiochemistryProtein Synthesis and Degradationbiology.protein030217 neurology & neurosurgeryThe Journal of biological chemistry
researchProduct

Formation of a micropatterned titania photocatalyst by microcontact printed silicatein on gold surfaces

2012

The enzyme silicatein has been bioengineered to carry a thiol-bearing Au-affinity tag (Cys-tag) for direct immobilization on gold carriers in shortest time without the need for prior surface functionalization. Through microcontact printing, defined silicatein micropatterns were created on gold surfaces, facilitating the subsequent enzymatically controlled synthesis of photocatalytically active TiO(2).

TitaniumMaterials scienceSurface PropertiesUltraviolet RaysMetals and AlloysNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCathepsins01 natural sciencesRecombinant ProteinsCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMicrocontact printingMaterials ChemistryCeramics and CompositesPhotocatalysisSurface modificationGold0210 nano-technologyChemical Communications
researchProduct