0000000000385705

AUTHOR

Carol Y. Cheung

0000-0003-0869-859x

Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection

International audience; This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with Diabetic Macular Edema (DME) versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME, which is among the most common causes of irreversible vision loss in individuals with diabetes. Here, a classification framework with five distinctive steps is proposed and we present an extensive study of each step. Our method considers combination of various pre-processings in conjunction with Local Binary Patterns (LBP) features and different mapping strategies. Using linear and non-linear cl…

research product

Validating retinal fundus image analysis algorithms: issues and a proposal.

This paper concerns the validation of automatic retinal image analysis (ARIA) algorithms. For reasons of space and consistency, we concentrate on the validation of algorithms processing color fundus camera images, currently the largest section of the ARIA literature. We sketch the context (imaging instruments and target tasks) of ARIA validation, summarizing the main image analysis and validation techniques. We then present a list of recommendations focusing on the creation of large repositories of test data created by international consortia, easily accessible via moderated Web sites, including multicenter annotations by multiple experts, specific to clinical tasks, and capable of running …

research product

Classification of SD-OCT volumes with multi pyramids, LBP and HOG descriptors: application to DME detections.

This paper deals with the automated detection of Diabetic Macular Edema (DME) on Optical Coherence Tomography (OCT) volumes. Our method considers a generic classification pipeline with preprocessing for noise removal and flattening of each B-Scan. Features such as Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) are extracted and combined to create a set of different feature vectors which are fed to a linear-Support Vector Machines (SVM) Classifier. Experimental results show a promising sensitivity/specificity of 0.75/0.87 on a challenging dataset.

research product

Classifying DME vs Normal SD-OCT volumes: A review

International audience; This article reviews the current state of automatic classification methodologies to identify Diabetic Macular Edema (DME) versus normal subjects based on Spectral Domain OCT (SD-OCT) data. Addressing this classification problem has valuable interest since early detection and treatment of DME play a major role to prevent eye adverse effects such as blindness. The main contribution of this article is to cover the lack of a public dataset and benchmark suited for classifying DME and normal SD-OCT volumes, providing our own implementation of the most relevant methodologies in the literature. Subsequently, 6 different methods were implemented and evaluated using this comm…

research product