6533b7dcfe1ef96bd12716f4
RESEARCH PRODUCT
Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection
Désiré SidibéEcosse L. LamoureuxFabrice MeriaudeauGuillaume LemaitreCarol Y. CheungJoan MassichDan MileaMojdeh RastgooTien Yin Wongsubject
genetic structures[INFO.INFO-IM] Computer Science [cs]/Medical Imaging[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]0302 clinical medicine[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Segmentationlcsh:OphthalmologySpeckleLBPDiagnosisPrevalencePreprocessorComputer visionSegmentationmedicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingExperimental validationDiabetic Macular Edema[ SDV.MHEP.OS ] Life Sciences [q-bio]/Human health and pathology/Sensory OrgansOptical Coherence Tomography[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingResearch ArticleArticle SubjectLocal binary patterns03 medical and health sciencesSpeckle patternOptical coherence tomography[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyMedical imagingmedicineDME[INFO.INFO-IM]Computer Science [cs]/Medical ImagingCoherence (signal processing)Texture[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory OrgansRetinopathy[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingbusiness.industry[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Pattern recognitioneye diseasesOphthalmologyOCTlcsh:RE1-994030221 ophthalmology & optometryImagesArtificial intelligencebusiness030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologydescription
International audience; This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with Diabetic Macular Edema (DME) versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME, which is among the most common causes of irreversible vision loss in individuals with diabetes. Here, a classification framework with five distinctive steps is proposed and we present an extensive study of each step. Our method considers combination of various pre-processings in conjunction with Local Binary Patterns (LBP) features and different mapping strategies. Using linear and non-linear classifiers, we tested the developed framework on a balanced cohort of 32 patients. Experimental results show that the proposed method outperforms the previous studies by achieving a Sensitivity (SE) and Specificity (SP) of 81.2% and 93.7%, respectively. Our study concludes that the 3D features and high-level representation of 2D features using patches achieve the best results. However, the effects of pre-processing is inconsistent with respect to different classifiers and feature configurations.
year | journal | country | edition | language |
---|---|---|---|---|
2016-05-24 |