0000000000385786

AUTHOR

Delfo Sanfilippo

Carrier-induced quenching processes on the erbium luminescence in silicon nanocluster devices

The luminescence-quenching processes limiting quantum efficiency in Er-doped silicon nanocluster light-emitting devices are investigated and identified. It is found that carrier injection, while needed to excite Er ions through electron-hole recombination, at the same time produces an efficient nonradiative Auger deexcitation with trapped carriers. This phenomenon is studied in detail and, on the basis of its understanding, we propose device structures in which sequential injection of electrons and holes can improve quantum efficiency by avoiding Auger processes. © 2006 The American Physical Society.

research product

Photonic-crystal silicon-nanocluster light-emitting device

We report on enhanced light extraction from a light-emitting device based on amorphous silicon nanoclusters, suitable for very-large-scale integration, and operating at room temperature. Standard low-cost optical lithography is employed to fabricate a two-dimensional photonic crystal onto the device. We measured a vertical emission with the extracted radiation enhanced by over a factor of 4, without the aid of any buried reflector. These achievements demonstrate that a cost-effective exploitation of photonic crystals is indeed within the reach of semiconductor industry and open the way to a new generation of nanostructured silicon devices in which photonic and electronic functions are integ…

research product

Responsivity measurements of N-on-P and P-on-N silicon photomultipliers in the continuous wave regime

We report the electrical and optical comparison, in continuous wave regime, of two novel classes of silicon photomultipliers (SiPMs) fabricated in planar technology on silicon P-type and N-type substrate respectively. Responsivity measurements have been performed with an incident optical power from tenths of picowatts to hundreds of nanowatts and on a broad spectrum, ranging from ultraviolet to near infrared (340-820 nm). For both classes of investigated SiPMs, responsivity shows flat response versus the optical incident power, when a preset overvoltage and wavelength is applied . More in detail, this linear behavior extends up to about 10 nW for lower overvoltages, while a shrink is observ…

research product

Measurements of Silicon Photomultipliers Responsivity in Continuous Wave Regime

We report on the electrical and optical characterization, in continuous wave regime, of a novel class of silicon photomultipliers fabricated in standard planar technology on a silicon p-type substrate. Responsivity measurements, performed with an incident optical power down to tenths of picowatts, at different reverse bias voltages and on a broad (340–820 nm) spectrum, will be shown and discussed. The device temperature was monitored, allowing us to give a physical interpretation of the measurements. The obtained results demonstrate that such novel silicon photomultipliers are suitable as sensitive power meters for low photon fluxes.

research product

Electroluminescence and transport properties in amorphous silicon nanostructures

We report the results of a detailed study on the structural, electrical and optical properties of light emitting devices based on amorphous Si nanostructures. Amorphous nanostructures may constitute an interesting system for the monolithic integration of optical and electrical functions in Si ULSI technology. In fact, they exhibit an intense room temperature electroluminescence (EL), with the advantage of being formed at a temperature of 900 °C, while at least 1100 °C is needed for the formation of Si nanocrystals. Optical and electrical properties of amorphous Si nanocluster devices have been studied in the temperature range between 30 and 300 K. The EL is seen to have a bell-shaped trend …

research product