0000000000389073

AUTHOR

Christian Bucher

First-passage problem for nonlinear systems under Lévy white noise through path integral method

In this paper, the first-passage problem for nonlinear systems driven by $$\alpha $$ -stable Levy white noises is considered. The path integral solution (PIS) is adopted for determining the reliability function and first-passage time probability density function of nonlinear oscillators. Specifically, based on the properties of $$\alpha $$ -stable random variables and processes, PIS is extended to deal with Levy white noises with any value of the stability index $$\alpha $$ . Application to linear and nonlinear systems considering different values of $$\alpha $$ is reported. Comparisons with pertinent Monte Carlo simulation data demonstrate the accuracy of the results.

research product

Path integral method for first-passage probability determination of nonlinear systems under levy white noise

In this paper the problem of the first-passage probabilities determination of nonlinear systems under alpha-stable Lévy white noises is addressed. Based on the properties of alpha-stable random variables and processes, the Path Integral method is extended to deal with nonlinear systems driven by Lévy white noises with a generic value of the stability index alpha. Furthermore, the determination of reliability functions and first-passage time probability density functions is handled step-by-step through a modification of the Path Integral technique. Comparison with pertinent Monte Carlo simulation reveals the excellent accuracy of the proposed method.

research product

Ideal and physical barrier problems for non-linear systems driven by normal and Poissonian white noise via path integral method

Abstract In this paper, the probability density evolution of Markov processes is analyzed for a class of barrier problems specified in terms of certain boundary conditions. The standard case of computing the probability density of the response is associated with natural boundary conditions, and the first passage problem is associated with absorbing boundaries. In contrast, herein we consider the more general case of partially reflecting boundaries and the effect of these boundaries on the probability density of the response. In fact, both standard cases can be considered special cases of the general problem. We provide solutions by means of the path integral method for half- and single-degr…

research product

Dynamic Finite Element analysis of fractionally damped structural systems in the time domain

Visco-elastic material models with fractional characteristics have been used for several decades. This paper provides a simple methodology for Finite-Element-based dynamic analysis of structural systems with viscosity characterized by fractional derivatives of the strains. In particular, a re-formulation of the well-known Newmark method taking into account fractional derivatives discretized via the Grunwald–Letnikov summation allows the analysis of structural systems using standard Finite Element technology.

research product

Innovative straight formulation for plate in bending

In this paper it has been introduced an innovative formulation for evaluating the deflection function of a simply supported plate loaded by uniformly distributed edge moments. Framed into Line Element-less Method, this formulation allows the evaluation of solution in terms of deflection, through few lines of algorithm implemented by Mathematica software without resorting to any discretization neither in the domain nor in the boundary. Interesting savings in terms of time and computational costs are achieved. Results obtained by the proposed method are well contrasted by ones obtained by classical methods and Finite Element Method.

research product

Efficient solution of the first passage problem by Path Integration for normal and Poissonian white noise

Abstract In this paper the first passage problem is examined for linear and nonlinear systems driven by Poissonian and normal white noise input. The problem is handled step-by-step accounting for the Markov properties of the response process and then by Chapman–Kolmogorov equation. The final formulation consists just of a sequence of matrix–vector multiplications giving the reliability density function at any time instant. Comparison with Monte Carlo simulation reveals the excellent accuracy of the proposed method.

research product