6533b7dcfe1ef96bd1271f9d
RESEARCH PRODUCT
First-passage problem for nonlinear systems under Lévy white noise through path integral method
Antonina PirrottaAntonina PirrottaMario Di PaolaAlberto Di MatteoChristian Buchersubject
Mathematical optimizationPath integralMonte Carlo methodAerospace Engineering020101 civil engineeringOcean EngineeringProbability density function02 engineering and technologyLévy white noise0201 civil engineering0203 mechanical engineeringApplied mathematicsElectrical and Electronic EngineeringMathematicsFirst passageApplied MathematicsMechanical EngineeringWhite noiseFunction (mathematics)Nonlinear systemAlpha (programming language)020303 mechanical engineering & transportsControl and Systems EngineeringPath integral formulationNonlinear systemRandom variabledescription
In this paper, the first-passage problem for nonlinear systems driven by $$\alpha $$ -stable Levy white noises is considered. The path integral solution (PIS) is adopted for determining the reliability function and first-passage time probability density function of nonlinear oscillators. Specifically, based on the properties of $$\alpha $$ -stable random variables and processes, PIS is extended to deal with Levy white noises with any value of the stability index $$\alpha $$ . Application to linear and nonlinear systems considering different values of $$\alpha $$ is reported. Comparisons with pertinent Monte Carlo simulation data demonstrate the accuracy of the results.
year | journal | country | edition | language |
---|---|---|---|---|
2016-04-07 |