0000000000389117

AUTHOR

Roope Näsi

UAS BASED TREE SPECIES IDENTIFICATION USING THE NOVEL FPI BASED HYPERSPECTRAL CAMERAS IN VISIBLE, NIR AND SWIR SPECTRAL RANGES

Abstract. Unmanned airborne systems (UAS) based remote sensing offers flexible tool for environmental monitoring. Novel lightweight Fabry-Perot interferometer (FPI) based, frame format, hyperspectral imaging in the spectral range from 400 to 1600 nm was used for identifying different species of trees in a forest area. To the best of the authors’ knowledge, this was the first research where stereoscopic, hyperspectral VIS, NIR, SWIR data is collected for tree species identification using UAS. The first results of the analysis based on fusion of two FPI-based hyperspectral imagers and RGB camera showed that the novel FPI hyperspectral technology provided accurate geometric, radiometric and sp…

research product

Using Aerial Platforms in Predicting Water Quality Parameters from Hyperspectral Imaging Data with Deep Neural Networks

In near future it is assumable that automated unmanned aerial platforms are coming more common. There are visions that transportation of different goods would be done with large planes, which can handle over 1000 kg payloads. While these planes are used for transportation they could similarly be used for remote sensing applications by adding sensors to the planes. Hyperspectral imagers are one this kind of sensor types. There is need for the efficient methods to interpret hyperspectral data to the wanted water quality parameters. In this work we survey the performance of neural networks in the prediction of water quality parameters from remotely sensed hyperspectral data in freshwater basin…

research product

Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity

Recognition of tree species and geospatial information on tree species composition is essential for forest management. In this study, tree species recognition was examined using hyperspectral imagery from visible to near-infrared (VNIR) and short-wave infrared (SWIR) camera sensors in combination with a 3D photogrammetric canopy surface model based on RGB camera stereo-imagery. An arboretum with a diverse selection of 26 tree species from 14 genera was used as a test area. Aerial hyperspectral imagery and high spatial resolution photogrammetric color imagery were acquired from the test area using unmanned aerial vehicle (UAV) borne sensors. Hyperspectral imagery was processed to calibrated …

research product

Estimating Tree Health Decline Caused by Ips typographus L. from UAS RGB Images Using a Deep One-Stage Object Detection Neural Network

Various biotic and abiotic stresses are causing decline in forest health globally. Presently, one of the major biotic stress agents in Europe is the European spruce bark beetle (Ips typographus L.) which is increasingly causing widespread tree mortality in northern latitudes as a consequence of the warming climate. Remote sensing using unoccupied aerial systems (UAS) together with evolving machine learning techniques provide a powerful tool for fast-response monitoring of forest health. The aim of this study was to investigate the performance of a deep one-stage object detection neural network in the detection of damage by I. typographus in Norway spruce trees using UAS RGB images. A Scaled…

research product

CHOOSING OF OPTIMAL REFERENCE SAMPLES FOR BOREAL LAKE CHLOROPHYLL A CONCENTRATION MODELING USING AERIAL HYPERSPECTRAL DATA

Abstract. Optical remote sensing has potential to overcome the limitations of point estimations of lake water quality by providing spatial and temporal information. In open ocean waters the optical properties are dominated by phytoplankton density, while the relationship between color and the constituents is more complicated in inland waters varying regionally and seasonally. Concerning the difficulties relating to comprehensive modeling of complex inland and coastal waters, the alternative approach is considered in this paper: the raw digital numbers (DN) recorded using aerial remote hyperspectral sensing are used without corrections and derived by means of regression modeling to predict C…

research product

Tree species recognition in species rich area using UAV-borne hyperspectral imagery and stereo-photogrammetric point cloud

Abstract. Recognition of tree species and geospatial information of tree species composition is essential for forest management. In this study we test tree species recognition using hyperspectral imagery from VNIR and SWIR camera sensors in combination with 3D photogrammetric canopy surface model based on RGB camera stereo-imagery. An arboretum forest with a high number of tree species was used as a test area. The imagery was acquired from the test area using UAV-borne cameras. Hyperspectral imagery was calibrated for providing a radiometrically corrected reflectance mosaic, which was tested along with the original uncalibrated imagery. Alternative estimators were tested for predicting tree…

research product

Autonomous hyperspectral UAS photogrammetry for environmental monitoring applications

Abstract. The unmanned airborne system (UAS) remote sensing using lightweight multi- and hyperspectral imaging sensors offer new possibilities for the environmental monitoring applications. Based on the accurate measurements of the way in which the object reflect and emit energy, wide range of affecting variables can be monitored. Condition for reliable applications is reliable and accurate input data. In many applications, installation of geometric and radiometric reference targets in the object area is challenging, for instance, in forest or water areas. On the other hand, UASs are often operated in very poor conditions, under clouds or under variable cloud cover. Our objective is to deve…

research product

Estimating Grass Sward Quality and Quantity Parameters Using Drone Remote Sensing with Deep Neural Networks

Funding Information: Funding: This research was funded by Academy of Finland ICT 2023 Smart‐HSI—“Smart hyper‐ spectral imaging solutions for new era in Earth and planetary observations” (Decision no. 335612), by the European Agricultural Fund for Rural Development: Europe investing in rural areas, Pohjois‐ Savon Ely‐keskus (Grant no. 145346) and by the European Regional Development Fund for “Cyber‐ Grass I—Introduction to remote sensing and artificial intelligence assisted silage production” pro‐ ject (ID 20302863) in European Union Interreg Botnia‐Atlantica programme. This research was car‐ ried out in affiliation with the Academy of Finland Flagship “Forest‐Human‐Machine Interplay— Buildi…

research product