0000000000390943

AUTHOR

Joachim Bodensohn

Superfluid density in metastable 3He4He mixtures

Abstract We havestudied superfluld 3He4He mixtures quenched into nonequilibrium states inside the miscibility gap by means of second sound . From the results for the second sound velocity we conclude that the superfluid density in the metastable state is well described by extrapolation from equilibrium values. The boundary of the metastable region, where nucleation processes set in rapidly, is reflected in a sharp increase of the second sound attenuation.

research product

Charge-Induced Deformation of the 4He Solid-Superfluid Interface

The interface between solid and superfluid 4He has revealed unusual dynamic properties. Characteristic of this quantum system are the very high thermal conductivity of the superfluid phase, and an extremely small heat of fusion below temperatures of about 1 K. As a result, equilibrium at the solid-superfluid 4He interface is established quite rapidly, which gives rise, e.g., to melting — crystallization waves [1,2] — similar in appearance to surface waves on a free liquid surface — and to anomalous transmission of sound [3].

research product

The growth of atomically rough 4He crystals

We have studied the growth of atomically rough bcc and hcp4He crystals from the superfluid phase for temperaturesT>0.9 K. The growth coefficient displays a temperature dependence which can be represented bym 4 K∝ $$e^{\Delta E/k_B T} $$ . The parameter ΔE is found to be in close agreement with the energy gap of rotons, suggesting that these thermal excitations dominate the growth kinetics. Besides, the absolute value of the growth coefficient depends on crystal orientation, with an anisotropy for the hcp phase of about a factor of 2.5 between the $$\left\{ {10\bar 10} \right\}$$ and {0001} planes.

research product