0000000000390992

AUTHOR

Christophe Pin

Tunable optical lattices in the near-field of a few-mode nanophotonic waveguide

Due to the action of the scattering force, particles that are optically trapped at the surface of a waveguide are propelled in the direction of the light propagation. In this work, we demonstrate an original approach for creating tunable periodic arrays of optical traps along a few-mode silicon nanophotonic waveguide. We show how the near-field optical forces at the surface of the waveguide are periodically modulated when two guided modes with different propagation constants are simultaneously excited. The phenomenon is used to achieve stable trapping of a large number of dielectric particles or bacteria along a single waveguide. By controlling the light coupling conditions and the laser wa…

research product

Integrated plasmonic nanotweezers for nanoparticle manipulation.

We numerically demonstrate that short gold nanoparticle chains coupled to traditional SOI waveguides allow conceiving surface plasmon-based nanotweezers. This configuration provides for jumpless control of the trapping position of a nano-object as a function of the excitation wavelength, allowing for linear repositioning. This novel feature can be captivating for the conception of compact integrated optomechanical nanoactuators.

research product

Optical tweezing using tunable optical lattices along a few-mode silicon waveguide

International audience; Fourteen years ago, optical lattices and holographic tweezers were considered as a revolution, allowing for trapping andmanipulating multiple particles at the same time using laser light. Since then, near-field optical forces have arousedtremendous interest as they enable efficient trapping of a wide range of objects, from living cells to atoms, in integrateddevices. Yet, handling at will multiple objects using a guided light beam remains a challenging task for current on-chipoptical trapping techniques. We demonstrate here on-chip optical trapping of dielectric microbeads and bacteria usingone-dimensional optical lattices created by near-field mode beating along a f…

research product

On-chip periodic arrays of optical traps based on the superposition of guided modes in silicon waveguides

Since the pioneering work of Kawata and Tani [1], photonic waveguides have long been regarded as efficient optical conveyor belts for potential lab-on-a-chip applications. Indeed, near-field optical forces arising at the surface of such waveguides lead to efficient on-chip guided propulsion of micro- and even nanoparticles [2], as well as cells and bacteria in liquid solutions [3]. However, achieving stable and precisely controlled optical trapping of particles at the surface of a waveguide has been made possible only recently, and even then, it still requires complex photonic electro-optic tools to produce and handle on-chip standing waves [4].

research product

Optofluidic taming of a colloidal dimer with a silicon nanocavity

International audience; We report here the optical trapping of a heterogeneous colloidal dimer above a photonic crystal nanocavity used as an on-chip optical tweezer. The trapped dimer consists of a cluster of two dielectric microbeads of different sizes linked by van der Waals forces. The smallest bead, 1 μm in diameter, is observed to be preferentially trapped by the nanotweezer, leaving the second bead untrapped. The rotational nature of the trapped dimer Brownian motion is first evidenced. Then, in the presence of a fluid flow, control of its orientation and rotation is achieved. The whole system is found to show high rotational degrees of freedom, thereby acting as an effective flow-se…

research product