6533b7dcfe1ef96bd1272149

RESEARCH PRODUCT

Tunable optical lattices in the near-field of a few-mode nanophotonic waveguide

Emmanuel PicardFrédérique De FornelChristophe PinChristophe PinChristophe PinJean-baptiste JagerEmmanuel HadjiBenoit CluzelManon Tardif

subject

Optical latticeMaterials scienceScatteringbusiness.industryPhysicsQC1-999NanophotonicsPhysics::OpticsNear and far field02 engineering and technologyDielectric021001 nanoscience & nanotechnologyLaser01 natural sciencesWaveguide (optics)law.invention010309 opticsWavelengthlaw0103 physical sciencesOptoelectronics0210 nano-technologybusiness

description

Due to the action of the scattering force, particles that are optically trapped at the surface of a waveguide are propelled in the direction of the light propagation. In this work, we demonstrate an original approach for creating tunable periodic arrays of optical traps along a few-mode silicon nanophotonic waveguide. We show how the near-field optical forces at the surface of the waveguide are periodically modulated when two guided modes with different propagation constants are simultaneously excited. The phenomenon is used to achieve stable trapping of a large number of dielectric particles or bacteria along a single waveguide. By controlling the light coupling conditions and the laser wavelength, we investigate several techniques for manipulating the trapped particles. Especially, we demonstrate that the period of the optical lattice can be finely tuned by adjusting the laser wavelength. This effect can be used to control the trap positions, and thus transport the trapped particles in both directions along the waveguide.

https://doi.org/10.1051/epjconf/201921514001