0000000000393623
AUTHOR
E. Saitoh
Electric control of the spin Hall effect by intervalley transitions
Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength-quantified in terms of the SHE angle-is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by m…
Identifying the domain-wall spin structure in antiferromagnetic NiO/Pt
Emission of coherent THz magnons in an antiferromagnetic insulator triggered by ultrafast spin-phonon interactions
Antiferromagnetic materials have been proposed as new types of narrowband THz spintronic devices owing to their ultrafast spin dynamics. Manipulating coherently their spin dynamics, however, remains a key challenge that is envisioned to be accomplished by spin-orbit torques or direct optical excitations. Here, we demonstrate the combined generation of broadband THz (incoherent) magnons and narrowband (coherent) magnons at 1 THz in low damping thin films of NiO/Pt. We evidence, experimentally and through modelling, two excitation processes of magnetization dynamics in NiO, an off-resonant instantaneous optical spin torque and a strain-wave-induced THz torque induced by ultrafast Pt excitatio…
Magnetic sensitivity distribution of Hall devices in antiferromagnetic switching experiments
We analyze the complex impact of the local magnetic spin texture on the transverse Hall-type voltage in device structures utilized to measure magnetoresistance effects. We find a highly localized and asymmetric magnetic sensitivity in the eight-terminal geometries that are frequently used in current-induced switching experiments, for instance to probe antiferromagnetic materials. Using current-induced switching of antiferromagnetic NiO/Pt as an example, we estimate the change in the spin Hall magnetoresistance signal associated with switching events based on the domain switching patterns observed via direct imaging. This estimate correlates with the actual electrical data after subtraction …