0000000000393963
AUTHOR
Norikazu Kinoshita
Anionic Fluoro Complex of Element 105, Db
We report on the characteristic anion-exchange behavior of the superheavy element dubnium (Db) with atomic number Z=105 in HF/HNO3 solution at the fluoride ion concentration [F−]=0.003 M. The resul...
Chemical studies on rutherfordium (Rf) at JAERI
SummaryChemical studies on element 104, rutherfordium (Rf), at JAERI (Japan Atomic Energy Research Institute) are reviewed. The transactinide nuclide261Rf has been produced in the reaction248Cm(18O, 5n) at the JAERI tandem accelerator with the production cross section of about 13 nb. On-line anion-exchange experiments on Rf together with the lighter homologues, group-4 elements Zr and Hf, in acidic solutions have been conducted with a rapid ion-exchange separation apparatus. From the systematic study of the anion-exchange behavior of Rf, it has been found that the properties of Rf in HCl and HNO3solutions are quite similar to those of Zr and Hf, definitely confirming that Rf is a member of …
Adsorption of Db and its homologues Nb and Ta, and the pseudo-homologue Pa on anion-exchange resin in HF solution
Anion-exchange chromatography of element 105, dubnim (Db), produced in the 206 Cm( 19 F, 5n) 262 Db reaction is investigated together with the homologues Nb and Ta, and the pseudo-homologue Pa in 13.9 M hydrofluoric acid (HF) solution. The distribution coefficient (K d ) of Db on an anion-exchange resin is successfully determined by running cycles of 1702 chromatographic column separations. The result clearly indicates that the adsorption of Db on the resin is significantly different from that of the homologues and that the adsorption of anionic fluoro complexes of these elements decreases in the sequence of Ta ≈ Nb > Db > Pa.
Fluoride Complexation of Element 104, Rutherfordium
Fluoride complexation of element 104, rutherfordium (Rf), produced in the 248Cm(18O,5n)261Rf reaction has been studied by anion-exchange chromatography on an atom-at-a-time scale. The anion-exchange chromatographic behavior of Rf was investigated in 1.9-13.9 M hydrofluoric acid together with those of the group-4 elements Zr and Hf produced in the 18O-induced reactions on Ge and Gd targets, respectively. It was found that the adsorption behavior of Rf on anion-exchange resin is quite different from those of Zr and Hf, suggesting the influence of relativistic effects on the fluoride complexation of Rf.