0000000000394662
AUTHOR
Yao Chen
Influence of laminated architectures of heterostructured CeO2-ZnO and Fe2O3-ZnO films on photodegradation performances
Abstract The development of photocatalytically active films has gained a great attention in recent years. Herein, new heterostructured films associating ZnO and CeO2 or Fe2O3 and exhibiting various architectures were prepared by the solution precursor thermal spray (SPPS) process. The paper examines the effect of the films laminated architectures on the photodegradation performance. For CeO2-ZnO and Fe2O3-ZnO films, the photodegradation efficiency of the Orange II dye is 100% and 95% after 240 min UV light irradiation and after 360 min visible light irradiation, respectively. The photocatalytic activity of the laminated structures was found to depend on the materials used to construct the h…
International Society for Therapeutic Ultrasound Conference 2016
Low-temperature growth of n ++-GaN by metalorganic chemical vapor deposition to achieve low-resistivity tunnel junctions on blue light emitting diodes
We report on low-resistivity GaN tunnel junctions (TJ) on blue light-emitting diodes (LEDs). Si-doped n ++-GaN layers are grown by metalorganic chemical vapor deposition directly on LED epiwafers. Low growth temperature (<800 °C) was used to hinder Mg-passivation by hydrogen in the p ++-GaN top surface. This allows achieving low-resistivity TJs without the need for post-growth Mg activation. TJs are further improved by inserting a 5 nm thick In0.15Ga0.85N interlayer (IL) within the GaN TJ thanks to piezoelectric polarization induced band bending. Eventually, the impact of InGaN IL on the internal quantum efficiency of blue LEDs is discussed.
Oxygen-deficient Co3O4 submicron porous sphere films as highly active supsercapacitor electrodes
Abstract Herein, we report Co3O4 films with different content of oxygen vacancies and shapes of particles for supercapacitor electrodes. Under the similar area ratio of OII peak in the XPS spectrum of oxygen elements, the specific capacitance of electrode films with hollow spongy-like particles (963 F/g under a scan rate of 5 mV/s) is 1.6 times higher than that of the electrodes with solid irregular particles (596 F/g), indicating the effect of particle shapes on electrochemical properties. The films composed of submicron porous spheres and containing highest content of oxygen vacancies exhibited the specific capacitances as high as 1700 F/g under the scan rate of 5 mV/s. By contrast, after…