0000000000396408

AUTHOR

H. Sann

The ALICE Transition Radiation Detector: Construction, operation, and performance

The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both …

research product

Abstract of the 68th Meeting (Spring Meeting) 6–9 March 1990, Heidelberg

research product

Onset of nuclear vaporization inAu197+197Au collisions

Multifragmentation has been measured for [sup 197]Au+[sup 197]Au collisions at [ital E]/[ital A]=100, 250, and 400 MeV. The mean fragment multiplicity increases monotonically with the charged particle multiplicity at [ital E]/[ital A]=100 MeV, but decreases for central collisions with incident energy, consistent with the onset of nuclear vaporization. Molecular dynamics calculations follow some trends but underpredict the observed fragment multiplicities. Including the statistical decay of excited residues improves the agreement for peripheral collisions but worsens it for central collisions.

research product

Fragment Flow and the Multifragmentation Phase Space

Fragment distributions have been measured for Au+Au collisions at [ital E]/[ital A]=100 and 1000 MeV. A high detection efficiency for fragments was obtained by combining the ALADIN spectrometer and the MSU-Miniball/WU-Miniwall array. At both energies the maximum multiplicity of intermediate mass fragments (IMF) normalized to the size of the decaying system is about one IMF per 30 nucleons but the element distributions show significant differences. Within a coalescence picture the suppression of heavy fragments in central collisions at [ital E]/[ital A]=100 MeV may be related to a reduction of the density in momentum space which is caused by the collective expansion.

research product

The ALICE experiment at the CERN LHC

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

research product

Present status of the caloric curve of nuclei

Abstract Spectator decay was studied for the system Au + Au at an energy of 1000 A·MeV and the decay of the interaction region at energies between 50 and 200 A·MeV. In both cases temperatures were derived from several double-ratios of neighboring isotopes and from the population of excited states in 5 Li and 4 He. Agreement was found among the different isotope temperatures and also among the two excited state temperatures. The comparison of isotope and excited state temperatures, however, reveals large differences, which cannot be explained by feeding corrections. At incident energies between 600 and 1000 A·MeV the energy spectra of fragments and also neutrons of the decaying projectile sp…

research product

Electromagnetic fission of $^{238}$U at 600 and 1000 MeV per nucleon

Electromagnetic fission of238U projectiles at E/A =600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsacker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragme…

research product

"Table 1" of "Electromagnetic fission of U-238 at 600-MeV and 1000-MeV per nucleon"

Electromagnetic fission.

research product