0000000000397944

AUTHOR

Marina Garrido

0000-0002-4263-0989

showing 3 related works from this author

Mono- and Tripodal Porphyrins: Investigation on the Influence of the Number of Pyrene Anchors in Carbon Nanotube and Graphene Hybrids.

2020

A series of molecular precursors, containing one (1 and 3) or three (2 and 4) pyrene anchors, covalently linked to porphyrins (free base or Zn), were prepared and characterized. All of them enable ...

ChemistryGrapheneFree baseGeneral ChemistryCarbon nanotubeBiochemistryCatalysislaw.inventionchemistry.chemical_compoundColloid and Surface ChemistryCovalent bondlawPolymer chemistryPyreneJournal of the American Chemical Society
researchProduct

Supramolecular assembly of pyrene-tetrathiafulvalene hybrids on graphene: Structure-property relationships and biosensing activity

2021

Two different molecular receptors (1 and 2) incorporating one and three pyrene units to promote the π–π interaction with the basal plane of graphene are reported. In order to modulate the electronic properties of graphene, the new receptors are endowed with an electron-donor tetrathiafulvalene moiety (exTTF). The resulting non-covalent hybrids have been characterized by different analytical, spectroscopic and microscopic techniques (TGA, Raman, UV-Vis absorption, TEM and XPS), and the supramolecular interaction of the molecular systems with graphene has been investigated by theoretical calculations. The electrochemical behavior of the pyrene-exTTF hybrids onto distinct graphene-based materi…

Materials scienceGrapheneSupramolecular chemistryGeneral Chemistrylaw.inventionSupramolecular assemblychemistry.chemical_compoundCrystallographysymbols.namesakechemistrylawMaterials ChemistrysymbolsMoietyPyreneRaman spectroscopyBiosensorTetrathiafulvalene
researchProduct

Non-covalent graphene nanobuds from mono- and tripodal binding motifs.

2017

Graphene nanobuds were prepared via the non-covalent anchoring of C60-based molecules endowed with one or three pyrene units, respectively. TGA, FTIR, UV-Vis and TEM investigations confirmed the formation of nanohybrids. For the two molecular derivatives, striking differences were determined in their interaction with graphene or carbon surfaces by Raman, cyclic voltammetry and molecular mechanics calculations, revealing the important role of pyrene adsorption in modulating the electronic properties of the nanohybrids.

chemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesCatalysislaw.inventionsymbols.namesakechemistry.chemical_compoundAdsorptionlawMaterials ChemistryOrganic chemistryMoleculeFourier transform infrared spectroscopyGrapheneMetals and Alloystechnology industry and agricultureQuímica orgánicaGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciences3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistryCeramics and CompositessymbolsPyreneCyclic voltammetry0210 nano-technologyRaman spectroscopyCarbonChemical communications (Cambridge, England)
researchProduct