0000000000400049

AUTHOR

Christian Darlot

Modélisation des voies de la commande saccadique

A model of the saccadic pathways is proposed.

research product

Motion sickness induced by otolith stimulation is correlated with otolith-induced eye movements

International audience; This article addresses the relationships between motion sickness (MS) and three-dimensional (3D) ocular responses during otolith stimulation. A group of 19 healthy subjects was tested for motion sickness during a 16 min otolith stimulation induced by off-vertical axis rotation (OVAR) (constant velocity 60 degrees /s, frequency 0.16 Hz). For each subject, the MS induced during the session was quantified, and based on this quantification, the subjects were divided into two groups of less susceptible (MS-), and more susceptible (MS+) subjects. The angular eye velocity induced by the otolith stimulation was analyzed in order to identify a possible correlation between sus…

research product

Daily modulation of the speed–accuracy trade-off

International audience; Goal-oriented arm movements are characterized by a balance between speed and accuracy. The relation between speed and accuracy has been formalized by Fitts’ law and predicts a linear increase in movement duration with task constraints. Up to now this relation has been investigated on a short-time scale only, that is during a single experimental session, although chronobiological studies report that the motor system is shaped by circadian rhythms. Here, we examine whether the speed–accuracy trade-off could vary during the day. Healthy adults carried out arm-pointing movements as accurately and fast as possible toward targets of different sizes at various hours of the …

research product

A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements

International audience; In this paper, a novel system-level mathematical model of the Basal Ganglia (BG) for kinematic planning, is proposed. An arm composed of several segments presents a geometric redundancy. Thus, selecting one trajectory among an infinite number of possible ones requires overcoming redundancy, according to some kinds of optimization. Solving this optimization is assumed to be the function of BG in planning. In the proposed model, first, a mathematical solution of kinematic planning is proposed for movements of a redundant arm in a plane, based on minimizing energy consumption. Next, the function of each part in the model is interpreted as a possible role of a nucleus of…

research product

Cerebellar learning of bio-mechanical functions of extra-ocular muscles: modeling by artificial neural networks

A control circuit is proposed to model the command of saccadic eye movements. Its wiring is deduced from a mathematical constraint, i.e. the necessity, for motor orders processing, to compute an approximate inverse function of the bio-mechanical function of the moving plant, here the bio-mechanics of the eye. This wiring is comparable to the anatomy of the cerebellar pathways. A predicting element, necessary for inversion and thus for movement accuracy, is modeled by an artificial neural network whose structure, deduced from physical constraints expressing the mechanics of the eye, is similar to the cell connectivity of the cerebellar cortex. Its functioning is set by supervised reinforceme…

research product

Trains with a view to sickness

This study was supported by Region Rhone-Alpes (contract ARASSH n°L099552501) and CEC Improving Human Potential: Access to Research Infrastructures HPRI-1999-CT-00025.

research product

Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.

Abstract The command and control of limb movements by the cerebellar and reflex pathways are modeled by means of a circuit whose structure is deduced from functional constraints. One constraint is that fast limb movements must be accurate although they cannot be continuously controlled in closed loop by use of sensory signals. Thus, the pathways which process the motor orders must contain approximate inverse functions of the bio-mechanical functions of the limb and of the muscles. This can be achieved by means of parallel feedback loops, whose pattern turns out to be comparable to the anatomy of the cerebellar pathways. They contain neural networks able to anticipate the motor consequences …

research product

Integration of Gravitational Torques in Cerebellar Pathways Allows for the Dynamic Inverse Computation of Vertical Pointing Movements of a Robot Arm

BackgroundSeveral authors suggested that gravitational forces are centrally represented in the brain for planning, control and sensorimotor predictions of movements. Furthermore, some studies proposed that the cerebellum computes the inverse dynamics (internal inverse model) whereas others suggested that it computes sensorimotor predictions (internal forward model).Methodology/principal findingsThis study proposes a model of cerebellar pathways deduced from both biological and physical constraints. The model learns the dynamic inverse computation of the effect of gravitational torques from its sensorimotor predictions without calculating an explicit inverse computation. By using supervised …

research product

The Inactivation Principle: Mathematical Solutions Minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements

An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecti…

research product