0000000000400416
AUTHOR
John P. Greene
Search for a 2-quasiparticle high-Kisomer inRf256
The energies of 2-quasiparticle (2-qp) states in heavy shell-stabilized nuclei provide information on the single-particle states that are responsible for the stability of superheavy nuclei. We have calculated the energies of 2-qp states in {sup 256}Rf, which suggest that a long-lived, low-energy 8{sup -} isomer should exist. A search was conducted for this isomer through a calorimetric conversion electron signal, sandwiched in time between implantation of a {sup 256}Rf nucleus and its fission decay, all within the same pixel of a double-sided Si strip detector. A 17(5)-{mu}s isomer was identified. However, its low population, {approx}5(2)% that of the ground state instead of the expected {a…
Kπ=8−isomers andKπ=2−octupole vibrations inN=150shell-stabilized isotones
Isomers have been populated in {sup 246}Cm and {sup 252}No with quantum numbers K{sup {pi}}=8{sup -}, which decay through K{sup {pi}}=2{sup -} rotational bands built on octupole vibrational states. For N=150 isotones with (even) atomic number Z=94-102, the K{sup {pi}}=8{sup -} and 2{sup -} states have remarkably stable energies, indicating neutron excitations. An exception is a singular minimum in the 2{sup -} energy at Z=98, due to the additional role of proton configurations. The nearly constant energies, in isotones spanning an 18% increase in Coulomb energy near the Coulomb limit, provide a test for theory. The two-quasiparticle K{sup {pi}}=8{sup -} energies are described with single-pa…
Counting IndividualCa41Atoms with a Magneto-Optical Trap
Atom trap trace analysis, a novel method based upon laser trapping and cooling, is used to count individual atoms of $^{41}\mathrm{Ca}$ present in biomedical samples with isotopic abundance levels between ${10}^{\ensuremath{-}8}$ and ${10}^{\ensuremath{-}10}$. The method is calibrated against resonance ionization mass spectrometry, demonstrating good agreement between the two methods. The present system has a counting efficiency of $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}7}$. Within 1 h of observation time, its $3\mathrm{\text{\ensuremath{-}}}\ensuremath{\sigma}$ detection limit on the isotopic abundance of $^{41}\mathrm{Ca}$ reaches $4.5\ifmmode\times\else\texttimes\fi{}{10…
Production and isobaric separation of 63Ni ions for determination of the 62Ni(n,γ)63Ni reaction cross section at stellar temperatures
Structure of the Odd-A, Shell-Stabilized NucleusNo102253
In-beam {gamma}-ray spectroscopic measurements have been made on {sub 102}{sup 253}No. A single rotational band was identified up to a probable spin of 39/2({Dirac_h}/2{pi}), which is assigned to the 7/2{sup +}[624] Nilsson configuration. The bandhead energy and the moment of inertia provide discriminating tests of contemporary models of the heaviest nuclei. Novel methods were required to interpret the sparse data set associated with cross sections of around 50 nb. These methods included comparisons of experimental and simulated spectra, as well as testing for evidence of a rotational band in the {gamma}{gamma} matrix.
Low-spin structure of85Se and theβnbranching of85As
Fission fragments from neutron-induced fission of ${}^{235}$U produced at the high-flux reactor of the Institut Laue-Langevin, Grenoble, were separated with the Lohengrin separator to provide a beam of neutron-rich ${}^{85}\phantom{\rule{-0.16em}{0ex}}$As nuclei. The ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of ${}^{85}\phantom{\rule{-0.16em}{0ex}}$As to ${}^{85}$Se was studied using $\ensuremath{\gamma}$-$\ensuremath{\gamma}$ and $\ensuremath{\beta}$-$\ensuremath{\gamma}$ coincidence techniques. ${}^{85}$Se was also studied using the prompt-$\ensuremath{\gamma}$ coincidence data from spontaneous fission of ${}^{248}$Cm and ${}^{252}$Cf measured with the Eurogam2 and Gammasphere Ge arra…
Stellar(n,γ)Cross Section ofNi62
The 62Ni(n,gamma)63Ni(t(1/2)=100+/-2 yr) reaction plays an important role in the control of the flow path of the slow neutron-capture (s) nucleosynthesis process. We have measured for the first time the total cross section of this reaction for a quasi-Maxwellian (kT=25 keV) neutron flux. The measurement was performed by fast-neutron activation, combined with accelerator mass spectrometry to detect directly the 63Ni product nuclei. The experimental value of 28.4+/-2.8 mb, fairly consistent with a recent calculation, affects the calculated net yield of 62Ni itself and the whole distribution of nuclei with 62<A<90 produced by the weak s process in massive stars.
Neutron configurations inPd113
Excited states in $^{113}\mathrm{Pd}$, populated in ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of $^{113}\mathrm{Rh}$ and in spontaneous fission of $^{248}\mathrm{Cm}$ and $^{252}\mathrm{Cf}$, have been studied by means of $\ensuremath{\gamma}$ spectroscopy at the IGISOL facility of Jyv\"askyl\"a University and using large arrays of Ge detectors (Eurogam2 and Gammasphere, respectively). The position of the ${11/2}^{\ensuremath{-}}$ yrast excitation in $^{113}\mathrm{Pd}$, proposed recently at 166.1 keV by other authors, has been corrected to 98.9 keV. The decay of this level has been discussed to explain the observed transition intensities. The ${7/2}^{\ensuremath{-}}$ member of the yras…
Bridging the nuclear structure gap between stable and super heavy nuclei
International audience; Due to recent advances in detection techniques, excited states in several trans-fermium nuclei were studied in many laboratories worldwide, shedding light on the evolution of nuclear structure between stable nuclei and the predicted island of stability centered around spherical magic numbers. In particular, studies of K-isomers around the Z=100 and N=152 deformed shell closures extended information on the energies of Nilsson orbitals at the Fermi surface. Some of these orbitals originate from spherical states, which are relevant to the magic gaps in super-heavy nuclei. The single-particle energies can be used to test various theoretical predictions and aid in extrapo…
Identification of theg92proton and neutron band crossing in theN=ZnucleusSr76
High-spin states in $^{76}\mathrm{Sr}$ have been studied using Gammasphere plus Microball detector arrays. The known yrast band has been extended beyond the first band crossing, which involves the simultaneous alignment of pairs of ${\mathrm{g}}_{\frac{9}{2}}$ protons and neutrons, to a tentative spin of $24\ensuremath{\hbar}$. The data are compared with the results of cranked relativistic mean-field (CRMF) and cranked relativistic Hartree-Bogoliubov (CRHB) calculations. The properties of the band, including the ${\mathrm{g}}_{\frac{9}{2}}$ proton/neutron band crossing frequency and moments of inertia, are found to be well reproduced by the CRHB calculations. Furthermore, the unpaired CRMF …
Decay and Fission Hindrance of Two- and Four-QuasiparticleKIsomers inRf254
Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) μs have been discovered in the heavy ^{254}Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K^{π}=8^{-}, ν^{2}(7/2^{+}[624],9/2^{-}[734]) two-quasineutron and the K^{π}=16^{+}, 8^{-}ν^{2}(7/2^{+}[624],9/2^{-}[734])⊗8^{-}π^{2}(7/2^{-}[514],9/2^{+}[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. …
Shape isomerism and shape coexistence effects on the Coulomb energy differences in theN=Znucleus66As and neighboringT=1multiplets
Excited states of the $N=Z=33$ nucleus ${}^{66}$As have been populated in a fusion-evaporation reaction and studied using $\ensuremath{\gamma}$-ray spectroscopic techniques. Special emphasis was put into the search for candidates for the $T=1$ states. A new 3${}^{+}$ isomer has been observed with a lifetime of 1.1(3) ns. This is believed to be the predicted oblate shape isomer. The excited levels are discussed in terms of the shell model and of the complex excited Vampir approaches. Coulomb energy differences are determined from the comparison of the $T=1$ states with their analog partners. The unusual behavior of the Coulomb energy differences in the $A=70$ mass region is explained through…
Deformation of rotational structures inKr73andRb74: Probing the additivity principle at triaxial shapes
Lifetimes have been deduced in the intermediate/high-spin range for the three known rotational bands in $^{73}\mathrm{Kr}$ and the $T=0$ band in $^{74}\mathrm{Rb}$ using the residual Doppler shift method. This has enabled relative transition quadrupole moments to be studied for the first time in triaxial nuclei as a function of spin. The data suggest that the additivity principle for transition quadrupole moments is violated, a result that is in disagreement with predictions from cranked Nilsson-Strutinsky and cranked relativistic mean-field theory calculations. The reasons for the discrepancy are not understood but may indicate that important correlations are missing from the models.
New constraints on the Al25(p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions
The astrophysical $^{25}\mathrm{Al}(p,\ensuremath{\gamma})\phantom{\rule{0.16em}{0ex}}^{26}\mathrm{Si}$ reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic $^{26}\mathrm{Al}$ ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in $^{26}\mathrm{Si}$, that govern the rate of the $^{25}\mathrm{Al}(p,\ensuremath{\gamma})$ reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the $^{26}\mathrm{Si}$ mirror nucleus $^{26}\mathrm{Mg}$. We have measured the lifetime of the ${3}^{+}$, 6.125-MeV state in $^{26}\mathrm{Mg}$ to be $19(3)\phanto…