0000000000400421

AUTHOR

B. B. Back

Search for a 2-quasiparticle high-Kisomer inRf256

The energies of 2-quasiparticle (2-qp) states in heavy shell-stabilized nuclei provide information on the single-particle states that are responsible for the stability of superheavy nuclei. We have calculated the energies of 2-qp states in {sup 256}Rf, which suggest that a long-lived, low-energy 8{sup -} isomer should exist. A search was conducted for this isomer through a calorimetric conversion electron signal, sandwiched in time between implantation of a {sup 256}Rf nucleus and its fission decay, all within the same pixel of a double-sided Si strip detector. A 17(5)-{mu}s isomer was identified. However, its low population, {approx}5(2)% that of the ground state instead of the expected {a…

research product

Fission Barrier of Superheavy Nuclei and Persistence of Shell Effects at High Spin: Cases ofNo254andTh220

We report on the first measurement of the fission barrier height in a heavy shell-stabilized nucleus. The fission barrier height of No-254 is measured to be B-f = 6.0 +/- 0.5 MeV at spin 15 (h) over bar and, by extrapolation, B-f = 6.6 +/- 0.9 MeV at spin 0 (h) over bar. This information is deduced from the measured distribution of entry points in the excitation energy versus spin plane. The same measurement is performed for Th-220 and only a lower limit of the fission barrier height can be determined: B-f (I) > 8 MeV. Comparisons with theoretical fission barriers test theories that predict properties of superheavy elements.

research product

Exploring the stability of super heavy elements: First Measurement of the Fission Barrier of $^{254} $No

The gamma-ray multiplicity and total energy emitted by the heavy nucleus 254No have been measured at 2 different beam energies. From these measurements, the initial distributions of spin I and excitation energy E * of 254No were constructed. The distributions display a saturation in excitation energy, which allows a direct determination of the fission barrier. 254No is the heaviest shell-stabilized nucleus with a measured fission barrier. © Owned by the authors, published by EDP Sciences, 2014.

research product

Kπ=8−isomers andKπ=2−octupole vibrations inN=150shell-stabilized isotones

Isomers have been populated in {sup 246}Cm and {sup 252}No with quantum numbers K{sup {pi}}=8{sup -}, which decay through K{sup {pi}}=2{sup -} rotational bands built on octupole vibrational states. For N=150 isotones with (even) atomic number Z=94-102, the K{sup {pi}}=8{sup -} and 2{sup -} states have remarkably stable energies, indicating neutron excitations. An exception is a singular minimum in the 2{sup -} energy at Z=98, due to the additional role of proton configurations. The nearly constant energies, in isotones spanning an 18% increase in Coulomb energy near the Coulomb limit, provide a test for theory. The two-quasiparticle K{sup {pi}}=8{sup -} energies are described with single-pa…

research product

Stability and synthesis of superheavy elements: Fighting the battle against fission – example of $^{254}$No

International audience; Superheavy nuclei exist solely due to quantum shell effects,which create a pocket in the potential-energy surface of the nucleus, thusproviding a barrier against spontaneous fission. Determining the height ofthe fission barrier and its angular-momentum dependence is important toquantify the role that microscopic shell corrections play in enhancing andextending the limits of nuclear stability. In this talk, the first measurement ofa fission barrier in the very heavy nucleus 254No will be presented.

research product

Bridging the nuclear structure gap between stable and super heavy nuclei

International audience; Due to recent advances in detection techniques, excited states in several trans-fermium nuclei were studied in many laboratories worldwide, shedding light on the evolution of nuclear structure between stable nuclei and the predicted island of stability centered around spherical magic numbers. In particular, studies of K-isomers around the Z=100 and N=152 deformed shell closures extended information on the energies of Nilsson orbitals at the Fermi surface. Some of these orbitals originate from spherical states, which are relevant to the magic gaps in super-heavy nuclei. The single-particle energies can be used to test various theoretical predictions and aid in extrapo…

research product

Decay and Fission Hindrance of Two- and Four-QuasiparticleKIsomers inRf254

Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) μs have been discovered in the heavy ^{254}Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K^{π}=8^{-}, ν^{2}(7/2^{+}[624],9/2^{-}[734]) two-quasineutron and the K^{π}=16^{+}, 8^{-}ν^{2}(7/2^{+}[624],9/2^{-}[734])⊗8^{-}π^{2}(7/2^{-}[514],9/2^{+}[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. …

research product