0000000000400490

AUTHOR

Gabriela Aust

showing 5 related works from this author

Dissecting signaling and functions of adhesion G protein-coupled receptors

2012

G protein-coupled receptors (GPCRs) comprise an expanded superfamily of receptors in the human genome. Adhesion class G protein-coupled receptors (adhesion-GPCRs) form the second largest class of GPCRs. Despite the abundance, size, molecular structure, and functions in facilitating cell and matrix contacts in a variety of organ systems, adhesion-GPCRs are by far the most poorly understood GPCR class. Adhesion-GPCRs possess a unique molecular structure, with extended N-termini containing various adhesion domains. In addition, many adhesion-GPCRs are autoproteolytically cleaved into an N-terminal fragment (NTF, NT, α-subunit) and C-terminal fragment (CTF, CT, β-subunit) at a conserved GPCR au…

Tumor biologyGeneral NeuroscienceAdhesionComputational biologyBiologyGeneral Biochemistry Genetics and Molecular BiologyCell biologyGPR56History and Philosophy of ScienceHuman genomeSignal transductionCell adhesionReceptorhormones hormone substitutes and hormone antagonistsG protein-coupled receptorAnnals of the New York Academy of Sciences
researchProduct

International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors

2015

The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1…

Models MolecularSocieties ScientificSubfamilyComputational biologyBiologyGPR110PharmacologyLigandsGPR113Second Messenger SystemsReceptors G-Protein-CoupledCell MovementTerminology as TopicCell AdhesionCyclic AMPAnimalsHumansProtein IsoformsReceptorNomenclatureG protein-coupled receptorPharmacologyCell MembraneInternational AgenciesAdhesionQPGPR56Pharmacology ClinicalIUPHAR Nomenclature ReportsMolecular MedicineQP517Cell Adhesion MoleculesSignal TransductionPharmacological Reviews
researchProduct

New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors

2014

The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region. In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis-inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF are associated noncovalently as a heterodimer at the plasma membrane. While the biological function …

History and Philosophy of ScienceStructural biologyGeneral NeuroscienceExtracellularSignal transductionBiologyCell adhesionReceptorProtein maturationGeneral Biochemistry Genetics and Molecular BiologyFunction (biology)G protein-coupled receptorCell biologyAnnals of the New York Academy of Sciences
researchProduct

The expanding functional roles and signaling mechanisms of adhesion G protein-coupled receptors.

2019

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well…

0301 basic medicineG proteinGeneral Science & TechnologyArticleGeneral Biochemistry Genetics and Molecular BiologyReceptors G-Protein-Coupledimmunology03 medical and health sciencesG-Protein-Coupled0302 clinical medicineHistory and Philosophy of ScienceReceptorsExtracellularAnimalsHumanscancerstructural biologymechanosensationReceptordevelopmentG protein-coupled receptorChemistryGeneral NeuroscienceneurobiologySciences bio-médicales et agricolesTransmembrane proteinCell biology030104 developmental biologyStructural biologyGeneric health relevanceSignal transductionadhesion G protein-coupled receptor030217 neurology & neurosurgeryIntracellularsignal transductionSignal Transduction
researchProduct

Adhesion G protein-coupled receptor VLGR1/ADGRV1 regulates cell spreading and migration by mechanosensing at focal adhesions.

2021

Summary VLGR1 (very large G protein-coupled receptor-1) is by far the largest adhesion G protein-coupled receptor in humans. Homozygous pathologic variants of VLGR1 cause hereditary deaf blindness in Usher syndrome 2C and haploinsufficiency of VLGR1 is associated with epilepsy. However, its molecular function remains elusive. Herein, we used affinity proteomics to identify many components of focal adhesions (FAs) in the VLGR1 interactome. VLGR1 is localized in FAs and assembles in FA protein complexes in situ. Depletion or loss of VLGR1 decreases the number and length of FAs in hTERT-RPE1 cells and in astrocytes of Vlgr1 mutant mice. VLGR1 depletion reduces cell spread and migration kinetic…

0301 basic medicineBiomoleculesMultidisciplinaryChemistryScienceQCell02 engineering and technologyCell Biology021001 nanoscience & nanotechnologyProteomicsInteractomeArticleCell biologyFocal adhesion03 medical and health sciences030104 developmental biologyMetabotropic receptormedicine.anatomical_structuremedicine0210 nano-technologyHaploinsufficiencyReceptorMolecular BiologyG protein-coupled receptoriScience
researchProduct