0000000000402330

AUTHOR

Jane Grimwood

showing 3 related works from this author

The Chlamydomonas genome reveals the evolution of key animal and plant functions

2007

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the a…

0106 biological sciencesMESH: Sequence Analysis DNAMESH: Algal ProteinsChloroplastsProteomeMESH: PlantsChlamydomonas reinhardtii01 natural sciencesGenomeMESH: Membrane Transport ProteinsDNA AlgalMESH: DNA AlgalMESH: AnimalsGoniumPhotosynthesisMESH: PhylogenyMESH: PhotosynthesisPhylogenyGenetics0303 health sciencesGenomeMultidisciplinarybiologyMESH: Genomicsfood and beveragesGenomicsPlantsBiological EvolutionMESH: Genes[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]MESH: ProteomeFlagellaMultigene FamilyMESH: Computational BiologyMESH: Chlamydomonas reinhardtiiNuclear geneMolecular Sequence Data[SDV.BC]Life Sciences [q-bio]/Cellular BiologyFlagellumMESH: FlagellaArticle03 medical and health sciencesIntraflagellar transportMESH: EvolutionAnimalsMESH: Genome[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Gene[SDV.BC] Life Sciences [q-bio]/Cellular Biology030304 developmental biologyMESH: Molecular Sequence DataMESH: ChloroplastsAlgal ProteinsChlamydomonasComputational BiologyMembrane Transport ProteinsSequence Analysis DNAbiology.organism_classificationGenesMESH: Multigene FamilyChlamydomonas reinhardtii010606 plant biology & botany
researchProduct

Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

2017

Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-Tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the on…

0301 basic medicineEvolution[SDV]Life Sciences [q-bio]1.1 Normal biological development and functioningBangiophyceaeKinesinsRed algaemacromolecular substancesGenomeCell wall03 medical and health sciencesfoodCell WallUnderpinning researchBotany14. Life underwaterCalcium SignalingGeneComputingMilieux_MISCELLANEOUSPhylogenyvitamin B-12PorphyraMultidisciplinaryGenomebiologystress toleranceCell CycleMolecularcytoskeletonPlantvitamin B12Kinesinbiology.organism_classificationfood.foodChromatinActinsPorphyra umbilicalisPorphyraMulticellular organism030104 developmental biologycarbohydrate-active enzymes[SDE]Environmental Sciencescalcium-signaling
researchProduct

The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation

2007

The smallest known eukaryotes, at ≈1-μm diameter, are Ostreococcus tauri and related species of marine phytoplankton. The genome of Ostreococcus lucimarinus has been completed and compared with that of O. tauri . This comparison reveals surprising differences across orthologous chromosomes in the two species from highly syntenic chromosomes in most cases to chromosomes with almost no similarity. Species divergence in these phytoplankton is occurring through multiple mechanisms acting differently on different chromosomes and likely including acquisition of new genes through horizontal gene transfer. We speculate that this latter process may be involved in altering the cell-surface character…

0106 biological sciencesGenome evolutionProtein familyGene Transfer Horizontal[SDV]Life Sciences [q-bio]Molecular Sequence DataBiologyEnvironment01 natural sciencesGenomeChromosomesOstreococcus tauriOstreococcus03 medical and health sciencesChlorophyta[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]SelenoproteinsGeneComputingMilieux_MISCELLANEOUS030304 developmental biologyGeneticsCell Nucleus0303 health sciencesMultidisciplinaryMetal metabolismGenomeVitaminsBiological Sciencesbiology.organism_classificationPlanktonAdaptation PhysiologicalBiological EvolutionEukaryotic CellsMetalsHorizontal gene transfer010606 plant biology & botany
researchProduct