0000000000402390

AUTHOR

Arthur R. Grossman

showing 8 related works from this author

The Chlamydomonas genome reveals the evolution of key animal and plant functions

2007

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the a…

0106 biological sciencesMESH: Sequence Analysis DNAMESH: Algal ProteinsChloroplastsProteomeMESH: PlantsChlamydomonas reinhardtii01 natural sciencesGenomeMESH: Membrane Transport ProteinsDNA AlgalMESH: DNA AlgalMESH: AnimalsGoniumPhotosynthesisMESH: PhylogenyMESH: PhotosynthesisPhylogenyGenetics0303 health sciencesGenomeMultidisciplinarybiologyMESH: Genomicsfood and beveragesGenomicsPlantsBiological EvolutionMESH: Genes[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]MESH: ProteomeFlagellaMultigene FamilyMESH: Computational BiologyMESH: Chlamydomonas reinhardtiiNuclear geneMolecular Sequence Data[SDV.BC]Life Sciences [q-bio]/Cellular BiologyFlagellumMESH: FlagellaArticle03 medical and health sciencesIntraflagellar transportMESH: EvolutionAnimalsMESH: Genome[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Gene[SDV.BC] Life Sciences [q-bio]/Cellular Biology030304 developmental biologyMESH: Molecular Sequence DataMESH: ChloroplastsAlgal ProteinsChlamydomonasComputational BiologyMembrane Transport ProteinsSequence Analysis DNAbiology.organism_classificationGenesMESH: Multigene FamilyChlamydomonas reinhardtii010606 plant biology & botany
researchProduct

Genome-Based Examination of Chlorophyll and Carotenoid Biosynthesis in Chlamydomonas reinhardtii    

2005

Abstract The unicellular green alga Chlamydomonas reinhardtii is a particularly important model organism for the study of photosynthesis since this alga can grow heterotrophically, and mutants in photosynthesis are therefore conditional rather than lethal. The recently developed tools for genomic analyses of this organism have allowed us to identify most of the genes required for chlorophyll and carotenoid biosynthesis and to examine their phylogenetic relationships with homologous genes from vascular plants, other algae, and cyanobacteria. Comparative genome analyses revealed some intriguing features associated with pigment biosynthesis in C. reinhardtii; in some cases, there are additiona…

GeneticsbiologyPhysiologyMutantChlamydomonas reinhardtiiPlant Sciencebiology.organism_classificationIsozymeGenomechemistry.chemical_compoundchemistryChlorophyllCodon usage biasGeneticsGeneFunction (biology)Plant Physiology
researchProduct

Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

2017

Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-Tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the on…

0301 basic medicineEvolution[SDV]Life Sciences [q-bio]1.1 Normal biological development and functioningBangiophyceaeKinesinsRed algaemacromolecular substancesGenomeCell wall03 medical and health sciencesfoodCell WallUnderpinning researchBotany14. Life underwaterCalcium SignalingGeneComputingMilieux_MISCELLANEOUSPhylogenyvitamin B-12PorphyraMultidisciplinaryGenomebiologystress toleranceCell CycleMolecularcytoskeletonPlantvitamin B12Kinesinbiology.organism_classificationfood.foodChromatinActinsPorphyra umbilicalisPorphyraMulticellular organism030104 developmental biologycarbohydrate-active enzymes[SDE]Environmental Sciencescalcium-signaling
researchProduct

Porphyra (Bangiophyceae) Transcriptomes Provide Insights Into Red Algal Development And Metabolism.

2012

The red seaweed Porphyra (Bangiophyceae) and related Bangiales have global economic importance. Here, we report the analysis of a comprehensive transcriptome comprising ca. 4.7 million expressed sequence tag (EST) reads from P. umbilicalis (L.) J. Agardh and P. purpurea (Roth) C. Agardh (ca. 980 Mbp of data generated using 454 FLX pyrosequencing). These ESTs were isolated from the haploid gametophyte (blades from both species) and diploid conchocelis stage (from P. purpurea). In a bioinformatic analysis, only 20% of the contigs were found to encode proteins of known biological function. Comparative analysis of predicted protein functions in mesophilic (including Porphyra) and extremophilic …

GametophyteGeneticsExpressed sequence tagbiologyBangiophyceaePlant ScienceRed algaeAquatic Sciencebiology.organism_classificationPorphyraTranscriptomeRibosomal proteinBotanyGeneJournal of phycology
researchProduct

Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis.

2008

Chromist algae (stramenopiles, cryptophytes, and haptophytes) are major contributors to marine primary productivity. These eukaryotes acquired their plastid via secondary endosymbiosis, whereby an early-diverging red alga was engulfed by a protist and the plastid was retained and its associated nuclear-encoded genes were transferred to the host genome. Current data suggest, however, that chromists are paraphyletic; therefore, it remains unclear whether their plastids trace back to a single secondary endosymbiosis or, alternatively, this organelle has resulted from multiple independent events in the different chromist lineages. Both scenarios, however, predict that plastid-targeted, nucleus-…

Phylogenetic treeEndosymbiosisPrasinophyceaeProtistEukaryotaBiologybiology.organism_classificationmedicine.disease_causeBiological EvolutionCarotenoidsAlgaeEvolutionary biologyPhylogeneticsChlorophytaBotanyGeneticsmedicinePlastidsPlastidMolecular BiologyGeneEcology Evolution Behavior and SystematicsPhylogenyMolecular biology and evolution
researchProduct

Chlamydomonas reinhardtii in the landscape of pigments.

2004

▪ Abstract  This review focuses on the biosynthesis of pigments in the unicellular alga Chlamydomonas reinhardtii and their physiological and regulatory functions in the context of information gathered from studies of other photosynthetic organisms. C. reinhardtii is serving as an important model organism for studies of photosynthesis and the pigments associated with the photosynthetic apparatus. Despite extensive information pertaining to the biosynthetic pathways critical for making chlorophylls and carotenoids, we are just beginning to understand the control of these pathways, the coordination between pigment and apoprotein synthesis, and the interactions between the activities of these…

ChlorophyllRhodopsinNuclear geneChloroplastsved/biology.organism_classification_rank.speciesLight-Harvesting Protein ComplexesProtozoan ProteinsChlamydomonas reinhardtiiPhotosynthesisModels Biologicalchemistry.chemical_compoundHemiterpenesLycopeneBiosynthesisIsomerismPentanesBotanyGeneticsButadienesAnimalsPhotosynthesisModel organismCarotenoidPlant Proteinschemistry.chemical_classificationCell Nucleusbiologyved/biologyPigments Biologicalbiology.organism_classificationCarotenoidsChloroplastOxygenCytochrome b6f ComplexchemistryBiochemistryXanthophyllPhotoreceptor Cells InvertebrateChlamydomonas reinhardtiiAnnual review of genetics
researchProduct

GreenCut proteinCPLD49 ofChlamydomonas reinhardtiiassociates with thylakoid membranes and is required for cytochromeb6fcomplex accumulation

2018

The GreenCut encompasses a suite of nucleus-encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non-photosynthetic/heterotrophic organisms. In Chlamydomonas reinhardtii, CPLD49 (Conserved in Plant Lineage and Diatoms49) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that a cpld49 mutant has impaired photoautotrophic growth under high-light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochrome b6 f complex (Cytb6 f), which impacts linear and cyclic electron transport, but does not compromise the ability of the stra…

0106 biological sciences0301 basic medicineCytochrome b6f complex[SDV]Life Sciences [q-bio]MutantChlamydomonas reinhardtii[SDV.BC]Life Sciences [q-bio]/Cellular BiologyCell BiologyPlant ScienceBiologyPhotosynthesisbiology.organism_classification01 natural sciencesElectron transport chainCell biologyChloroplast03 medical and health sciences030104 developmental biologyMembrane protein complexThylakoidGeneticsComputingMilieux_MISCELLANEOUS010606 plant biology & botanyThe Plant Journal
researchProduct

A giant type I polyketide synthase participates in zygospore maturation in Chlamydomonas reinhardtii

2017

Polyketide synthases (PKSs) occur in many bacteria, fungi and plants. They are highly versatile enzymes involved in the biosynthesis of a large variety of compounds including antimicrobial agents, polymers associated with bacterial cell walls and plant pigments. While harmful algae are known to produce polyketide toxins, sequences of the genomes of non-toxic algae, including those of many green algal species, have surprisingly revealed the presence of genes encoding type I PKSs. The genome of the model alga Chlamydomonas reinhardtii (Chlorophyta) contains a single type I PKS gene, designated PKS1 (Cre10.g449750), which encodes a giant PKS with a predicted mass of 2.3 MDa. Here, we show that…

0301 basic medicinebiologyMutantChlamydomonas reinhardtiiCell BiologyPlant ScienceChlorophytaGenes Plantbiology.organism_classificationBacterial cell structureCell wall03 medical and health sciencesPolyketide030104 developmental biologyBiochemistryCell WallSeedsGeneticsZygosporePolyketide SynthasesSequence AlignmentGeneChlamydomonas reinhardtiiPlant ProteinsThe Plant Journal
researchProduct