0000000000406661

AUTHOR

Malte Probst

showing 4 related works from this author

Inferring Decision Strategies from Clickstreams in Decision Support Systems: A New Process-Tracing Approach using State Machines

2011

The importance of online shopping has grown remarkably over the last decade. In 2009, every West European spent on average € 483 online and this amount is expected to grow to € 601 in 2014. In Germany, the number of online shoppers has almost doubled since 2000: 44% of all adults regularly buy products onlinetoday. In Western Europe, online sales reached € 68 billion in 2009 and Forrester research forecasts it will reach € 114 billion by 2014 with an 11% compound annual growth rate.

Decision support systemFinite-state machineProcess tracingWestern europeBusinessCompound annual growth rateMarketingDecision makerAttribute level
researchProduct

Denoising Autoencoders for Fast Combinatorial Black Box Optimization

2015

Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Autoencoders (AE) are generative stochastic networks with these desired properties. We integrate a special type of AE, the Denoising Autoencoder (DAE), into an EDA and evaluate the performance of DAE-EDA on several combinatorial optimization problems with a single objective. We asses the number of fitness evaluations as well as the required CPU times. We compare the results to the performance to the Bayesian Optimization Algorithm (BOA) and RBM-EDA, another EDA which is based on a generative neural network which has proven competitive with BOA. For the considered pro…

FOS: Computer and information sciencesArtificial neural networkI.2.6business.industryFitness approximationComputer scienceNoise reductionI.2.8MathematicsofComputing_NUMERICALANALYSISComputer Science - Neural and Evolutionary ComputingMachine learningcomputer.software_genreAutoencoderOrders of magnitude (bit rate)Estimation of distribution algorithmBlack boxComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONNeural and Evolutionary Computing (cs.NE)Artificial intelligencebusinessI.2.6; I.2.8computerProceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation
researchProduct

Scalability of using Restricted Boltzmann Machines for Combinatorial Optimization

2014

Abstract Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Restricted Boltzmann Machines (RBMs) are generative neural networks with these desired properties. We integrate an RBM into an EDA and evaluate the performance of this system in solving combinatorial optimization problems with a single objective. We assess how the number of fitness evaluations and the CPU time scale with problem size and complexity. The results are compared to the Bayesian Optimization Algorithm (BOA), a state-of-the-art multivariate EDA, and the Dependency Tree Algorithm (DTA), which uses a simpler probability model requiring less computati…

FOS: Computer and information sciencesMathematical optimizationInformation Systems and ManagementOptimization problemGeneral Computer SciencePopulationComputer Science::Neural and Evolutionary Computation0211 other engineering and technologiesBoltzmann machine02 engineering and technologyManagement Science and Operations ResearchIndustrial and Manufacturing EngineeringEvolutionary computation0202 electrical engineering electronic engineering information engineeringNeural and Evolutionary Computing (cs.NE)educationMathematicseducation.field_of_study021103 operations researchArtificial neural networkI.2.6I.2.8Computer Science - Neural and Evolutionary ComputingEstimation of distribution algorithmModeling and SimulationScalabilityCombinatorial optimization020201 artificial intelligence & image processingI.2.6; I.2.8Algorithm
researchProduct

An implicitly parallel EDA based on restricted boltzmann machines

2014

We present a parallel version of RBM-EDA. RBM-EDA is an Estimation of Distribution Algorithm (EDA) that models dependencies between decision variables using a Restricted Boltzmann Machine (RBM). In contrast to other EDAs, RBM-EDA mainly uses matrix-matrix multiplications for model estimation and sampling. Hence, for implementation, standard libraries for linear algebra can be used. This allows an easy parallelization and leads to a high utilization of parallel architectures. The probabilistic model of the parallel version and the version on a single core are identical. We explore the speedups gained from running RBM-EDA on a Graphics Processing Unit. For problems of bounded difficulty like …

Restricted Boltzmann machineSpeedupEstimation of distribution algorithmArtificial neural networkComputer scienceLinear algebraGraphics processing unitBoltzmann machineParallel computingProceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation
researchProduct