0000000000407810

AUTHOR

Boaz Pokroy

Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules.

9 pages; International audience; We have performed precise structural measurements on five different calcitic seashells by high-resolution X-ray powder diffraction on a synchrotron beam line and by laboratory single crystal X-ray diffraction. The unit cell parameters a and c of biogenic calcite were found to be systematically larger than those measured in the non-biogenic calcite. The maximum lattice distortion (about 2.10(-3)) was detected along the c-axis. Under heat treatment above 200 degrees C, a pronounced lattice relaxation was observed, which allowed us to conclude that anisotropic lattice swelling in biogenic calcite is induced by organic macromolecules incorporated within the sing…

research product

Climate variation during the Holocene influenced the skeletal properties of Chamelea gallina shells in the North Adriatic Sea (Italy)

Understanding how marine taxa will respond to near-future climate changes is one of the main challenges for management of coastal ecosystem services. Ecological studies that investigate relationships between the environment and shell properties of commercially important marine species are commonly restricted to latitudinal gradients or small-scale laboratory experiments. This paper aimed to explore the variations in shell features and growth of the edible bivalve Chamelea gallina from the Holocene sedimentary succession to present-day thanatocoenosis of the Po Plain-Adriatic Sea system (Italy). Comparing the Holocene sub-fossil record to modern thanatocoenoses allowed obtaining an insight o…

research product

Protein mapping of calcium carbonate biominerals by immunogold

The construction of metazoan calcium carbonate skeletons is finely regulated by a proteinaceous extracellular matrix, which remains embedded within the exoskeleton. In spite of numerous biochemical studies, the precise localization of skeletal proteins has remained for a long time as an elusive goal. In this paper, we describe a technique for visualizing shell matrix proteins on the surface of calcium carbonate crystals or within the biominerals. The technique is as follows: freshly broken pieces of biominerals or NaOCl then EDTA-etched polished surfaces are incubated with an antibody elicited against one matrix protein, then with a secondary gold-coupled antibody. After silver enhancement,…

research product

A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate.

Hydrous CaCO 3 gets a new structure Calcium carbonate (CaCO 3 ) forms important minerals on Earth and is a model system for understanding crystal nucleation. Three different structures of CaCO 3 are known, along with two structures that are hydrated. Zou et al. found a third hydrated CaCO 3 structure formed from amorphous CaCO 3 in the presence of magnesium ions. The discovery illustrates the importance of amorphous precursors for producing new materials. Science , this issue p. 396

research product

Acidic Monosaccharides become Incorporated into Calcite Single Crystals*.

Streptococcus suis is an encapsulated bacterium and one of the most important swine pathogens and a zoonotic agent for which no effective vaccine exists. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. In addition to the previously known serotypes 2 and 14, that are non-immunogenic, we have recently purified and described the CPS structures for serotypes 1, 1/2, 3, 7, 8, and 9. Here, we aimed to elucidate how these new structurally diverse CPSs interact with the immune system to generate anti-CPS antibody responses. CPS-stimulated dendritic cells produced significant levels of C–C moti…

research product

Protein-induced, previously unidentified twin form of calcite.

Using single-crystal x-ray diffraction, we found a formerly unknown twin form in calcite crystals grown from solution to which a mollusc shell-derived 17-kDa protein, Caspartin, was added. This intracrystalline protein was extracted from the calcitic prisms of the Pinna nobilis shells. The observed twin form is characterized by the twinning plane of the (108)-type, which is in addition to the known four twin laws of calcite identified during 150 years of investigations. The established twin forms in calcite have twinning planes of the (001)-, (012)-, (104)-, and (018)-types. Our discovery provides additional evidence on the crucial role of biological macromolecules in biomineralization.

research product