6533b85afe1ef96bd12b8cba
RESEARCH PRODUCT
Protein-induced, previously unidentified twin form of calcite.
Moshe KaponNoam AdirFrédéric MarinEmil ZolotoyabkoBoaz Pokroysubject
MESH : Calcium Carbonatetwinning02 engineering and technology010402 general chemistry01 natural sciencesMESH : Proteinschemistry.chemical_compoundMESH: Proteinscalcium carbonate[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsCalciteMultidisciplinarybiologycrystal growthProteins021001 nanoscience & nanotechnologybiology.organism_classificationbiomineralization[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/Biomaterials0104 chemical sciencesCrystallographyCalcium carbonateMESH: Calcium Carbonatechemistryx-ray diffractionPhysical Sciences0210 nano-technologyCrystal twinningPinna nobilisBiomineralizationdescription
Using single-crystal x-ray diffraction, we found a formerly unknown twin form in calcite crystals grown from solution to which a mollusc shell-derived 17-kDa protein, Caspartin, was added. This intracrystalline protein was extracted from the calcitic prisms of the Pinna nobilis shells. The observed twin form is characterized by the twinning plane of the (108)-type, which is in addition to the known four twin laws of calcite identified during 150 years of investigations. The established twin forms in calcite have twinning planes of the (001)-, (012)-, (104)-, and (018)-types. Our discovery provides additional evidence on the crucial role of biological macromolecules in biomineralization.
year | journal | country | edition | language |
---|---|---|---|---|
2007-05-01 |