0000000000413867
AUTHOR
Sz. Nagy
Towards a magnetic field stabilization at ISOLTRAP for high-accuracy mass measurements on exotic nuclides
Abstract The field stability of a mass spectrometer plays a crucial role in the accuracy of mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of fluctuations are temperature variations in the vicinity of the trap and pressure changes in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the temperature and pressure fluctuations by at least an order of magnitude down to Δ T ≈ ± 5 mK and Δ p ≈ ± 5 Pa has been achieved, which corresponds to a relative magn…
Measurement and simulation of the pressure ratio between the two traps of double Penning trap mass spectrometers
Penning traps are ideal tools to perform high-precision mass measurements. For this purpose the cyclotron frequency of the stored charged particles is measured. In case of on-line mass measurements of short-lived nuclides produced at radioactive beam facilities the ions get in general first prepared and cooled by buffer-gas collisions in a preparation trap to reduce their motional amplitudes and are then transported to a precision trap for the cyclotron frequency determination. In modern Penning trap mass spectrometers both traps are placed in the homogeneous region of one superconducting magnet to optimize the transport efficiency. Because the gas pressure inside the precision trap has to …
High-accuracy Penning trap mass measurements with stored and cooled exotic ions
The technique of Penning trap mass spectrometry is briefly reviewed particularly in view of precision experiments on unstable nuclei, performed at different facilities worldwide. Selected examples of recent results emphasize the importance of high-precision mass measurements in various fields of physics.
TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz
The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on…
Measurements of ground-state properties for nuclear structure studies by precision mass and laser spectroscopy
Atomic physics techniques like Penning-trap and storage-ring mass spectrometry as well as laser spectroscopy have provided sensitive high-precision tools for detailed studies of nuclear ground-state properties far from the valley of β-stability. Mass, moment and nuclear charge radius measurements in long isotopic and isotonic chains have allowed extraction of nuclear structure information such as halos, shell and subshell closures, the onset of deformation, and the coexistence of nuclear shapes at nearly degenerate energies. This review covers experimental precision techniques to study nuclear ground-state properties and some of the most recent results for nuclear structure studies.
TRIGA-SPEC: the prototype of MATS and LaSpec
Investigation of short-lived nuclei is a challenging task that MATS and LaSpec will handle at the low energy branch of Super-FRS at FAIR. The groundwork for those experiments is laid-out already today at the TRIGA-SPEC facility as a powerful development platform located at the research reactor TRIGA Mainz. The latest status, new developments and first results of commissioning runs are presented here.
Quartz resonators for penning traps toward mass spectrometry on the heaviest ions
We report on cyclotron frequency measurements on trapped 206,207Pb+ ions by means of the non-destructive Fourier-transform ion-cyclotron-resonance technique at room temperature. In a proof-of-principle experiment using a quartz crystal instead of a coil as a resonator, we have alternately carried out cyclotron frequency measurements for 206Pb+ and 207Pb+ with the sideband coupling method to obtain 21 cyclotron-frequency ratios with a statistical uncertainty of 6 × 10−7. The mean frequency ratio R¯ deviates by about 2σ from the value deduced from the masses reported in the latest Atomic Mass Evaluation. We anticipate that this shift is due to the ion–ion interaction between the simultaneousl…
High-precision mass measurements for fundamental applications using highly-charged ions with SMILETRAP
The Penning trap mass spectrometer SMILETRAP takes advantage of highly-charged ions for high-accuracy mass measurements. In this paper recent mass measurements on Li and Ca ions are presented and their impact on fundamental applications discussed, especially the need for accurate mass values of hydrogen-like and lithium-like ions in the evaluation of the electron g-factor measurements in highly-charged ions is emphasized. Such experiments aim to test bound state quantum electrodynamics. Here the ionic mass is a key ingredient, which can be the limiting factor for the final precision.
New Mass Value forLi7
A high-accuracy mass measurement of $^{7}\mathrm{Li}$ was performed with the SMILETRAP Penning-trap mass spectrometer via a cyclotron frequency comparison of $^{7}\mathrm{Li}^{3+}$ and $\mathrm{H}_{2}{}^{+}$. A new atomic-mass value of $^{7}\mathrm{Li}$ has been determined to be $7.016\text{ }003\text{ }425\text{ }6(45)\text{ }\text{ }\mathrm{u}$ with a relative uncertainty of 0.63 ppb. It has uncovered a discrepancy as large as $14\ensuremath{\sigma}$ ($1.1\text{ }\text{ }\ensuremath{\mu}\mathrm{u}$) deviation relative to the literature value given in the Atomic-Mass Evaluation AME 2003. The importance of the improved and revised $^{7}\mathrm{Li}$ mass value, for calibration purposes in nu…
First online operation of TRIGA-TRAP
Abstract We report on the successful coupling of the Penning-trap mass spectrometry setup TRIGA-TRAP to the research reactor TRIGA Mainz. This offers the possibility to perform direct high-precision mass measurements of short-lived nuclei produced in neutron-induced fission of a 235 U target located near the reactor core. An aerosol-based gas-jet system is used for efficient transport of short-lived neutron-rich nuclei from the target chamber to a surface ion source. In conjunction with new ion optics and extended beam monitoring capabilities, the experimental setup has been fully commissioned. The design of the surface ion source, efficiency studies and first results are presented.
Magnetic field stabilization for high-accuracy mass measurements on exotic nuclides
The magnetic-field stability of a mass spectrometer plays a crucial role in precision mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of instabilities are temperature fluctuations in the vicinity of the trap and pressure fluctuations in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the fluctuations by at least one order of magnitude downto dT=+/-5mK and dp=+/-50mtorr has been achieved, which corresponds to a relative frequency change of 2.7x10^{-…
Mass measurements on stable nuclides in the rare-earth region with the Penning-trap mass spectrometer RIGA-TRAP
The masses of 15 stable nuclides in the rare-earth region have been measured with the Penning-trap mass spectrometer TRIGA-TRAP. This is the first series of absolute mass measurements linking these nuclides to the atomic-mass standard $^{12}\mathrm{C}$. Previously, nuclear reaction studies almost exclusively determined the literature values of these masses in the Atomic-Mass Evaluation. The TRIGA-TRAP results show deviations on the order of 3--4 standard deviations from the latest published values of the Atomic-Mass Evaluation 2003 for some cases. However, the binding-energy differences that are important for nuclear structure studies have been confirmed and improved. The new masses are dis…